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1. Particle in a Cylinder (3 Points)

A particle lives in a three-dimensional potential (Fig. A1)

V (r, ϕ, z) =

{
0 for r < a and 0 ≤ z < L
∞ otherwise

The Schrödinger-equation in cylindrical-coordinates is given by
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2m
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∂2φψ + ∂2zψ

]
+ V ψ = Eψ.

Solve with the ansatz ψ(r, ϕ, z) = A exp(inϕ) sin(kzz)R(r):

(a) (1 Punkt) Which conditions have to be fulfilled for n and kz?

(b) (1 Punkt) Show that R(r) = Jn(kr) with k =
√

2mE
~2 − k2z , where Jn is the Bessel-

function of the first kind. What condition do you obtain for the energy-quantization?

(c) (1 Punkt) Show that in the limit a � L the lowest energy levels are given by El =
~2γ2

2ma2 + ~2π2

2mL2 l
2, with l = 1, 2, 3, ... and γ being the first zero of J0(x).

2. Double-Well Potential (4 Points)
In this exercise we discuss the double-well potential in figure A2,

V (x) =

{
∞ |x| > b

v0δ(x) |x| ≤ b

with v0 > 0.

(a) (1 Point) Given the coordinate-dependent function g, the parity operator P is defined
by

Pg(x) = g(−x)

P 2g(x) = g(x).

Show that:



(i) If H(−x) = H(x) and ψ(x) is a solution of the Schrödinger-equation, show that
Pψ(x) is a solution as well.

(ii) The eigenfunctions of P are either symmetric or anti-symmetric, i.e. ψs/a(−x) =
±ψs/a.

(b) (1 Point) Make an appropriate ansatz for ψs/a, which fulfills the matching-conditions
at |x| = 0 and |x| = b and show that the energy-quantization in the symmetric and
anti-symmetric case is correspondingly given by

1

k
tan(bk) = − ~2

mv0
and sin

(
kb) = 0 , (1)

with ~k =
√

2mE.

(c) (1 Point) Discuss the limit v0 � ~2

mb and calculate approximately the energy-splitting
∆E = E2 − E1 of the two energetically lowest eigenstates ψ1 and ψ2, which should be
given by

∆E =
~4π2

m2b3v0
.

[Hint: Use the Taylor-expansion of tan(x) around x = π.]

(d) (1 Point) At the time instant t = 0, the state ψ is a superposition of the eigenstates ψ1

and ψ2 that we have discussed in (c),

ψ(x, t = 0) =
1√
2

(
ψ1(x, t = 0) + ψ2(x, t = 0)

)
.

Discuss qualitatively the time-evolution of |ψ(x, t)|2 for t > 0 by solving the time-
dependent Schrödinger-equation.

3. Hermite Polynomials (3 Points)
In the lecture, the eigenfunctions of the harmonic oscillator were discussed. In figure A3 you
find a sketch of these. They are linked to the so called Hermite polynomials

Hn(z) = (−1)nez
2

∂nz e
−z2 , n ≥ 0

(a) (1 Point) First, show that the function e−t
2+2zt is the generating function of the Hermite

polynomials, i.e.

e−t
2+2zt =

∞∑
n=0

tn

n!
Hn(z). (2)

[Hint: Use the Taylor-expansion of e−(z−t)
2

around t = 0.]

(b) (1 Point) Derive with the help of (2) the following recursion relations for Hn:

∂zHn(z) = 2nHn−1(z), n ≥ 1 (3)

and

Hn+1(z) = 2z Hn(z)− 2nHn−1(z), n ≥ 1 (4)

Use (3) and (4) to derive the differential equation[
∂2z − 2z∂z + 2n

]
Hn(z) = 0. (5)

[Hint: Eqs. (3) and (4) can be proven by differentiating (2) with respect to z or t.]

(c) (1 Point) Prove the orthogonality condition for the Hermite polynomials,∫ ∞
−∞

dz e−z
2

Hn(z)Hm(z) = 0, für n 6= m (6)

[Hint: Multiply the left hand side of (5) with Hm(z)e−z
2

and integrate over z. Subtract
the corresponding equation with m and n exchanged.]


