

Institut für Theoretische Physik (ITP) Karlsruher Institut für Technologie (KIT) Moderne Theoretische Physik I (TheoD, QM I)

Dozent: Prof. Dr. Frans R. Klinkhamer

Assistent: Dr. Viacheslav A. Emelyanov

- Abgabe am Montag, den 04.07.2016; Besprechung am Mittwoch, den 06.07.2016
- Aktuelle Informationen zur Vorlesung befinden sich unter folgendem Link: https://www.itp.kit.edu/~slava/quantenmechanik_ss_16.html
- Melden Sie sich rechtzeitig für Vorleistung und Klausur durch das QISPOS-System an. Dies ist erforderlich und erfolgt unter https://campus.studium.kit.edu

	••	
NT .	T T1	D 1.
Name:	Ublingsgrilbbe:	Piinkte [,]
1 tallie:		r anno

Übungsblatt 11

Aufgabe 11.1: Die Matrixdarstellung von Operatoren (8 Punkte)

(a) In einem dreidimensionalen Hilbert-Raum seien zwei lineare Operatoren durch ihre Wirkung auf die Vektoren einer orthonormierten Basis $\{|\alpha_1\rangle, |\alpha_2\rangle, |\alpha_3\rangle\}$ definiert:

$$\hat{A}|\alpha_{1}\rangle = 3|\alpha_{1}\rangle - i\sqrt{2}|\alpha_{2}\rangle + |\alpha_{3}\rangle,
\hat{A}|\alpha_{2}\rangle = i\sqrt{2}|\alpha_{1}\rangle + 2|\alpha_{2}\rangle - i\sqrt{2}|\alpha_{3}\rangle,
\hat{A}|\alpha_{3}\rangle = |\alpha_{1}\rangle + i\sqrt{2}|\alpha_{2}\rangle + 3|\alpha_{3}\rangle,$$
(1)

sowie

$$\hat{B}|\alpha_{1}\rangle = |\alpha_{1}\rangle + i\sqrt{2}|\alpha_{2}\rangle + |\alpha_{3}\rangle,
\hat{B}|\alpha_{2}\rangle = -i\sqrt{2}|\alpha_{1}\rangle + i\sqrt{2}|\alpha_{3}\rangle,
\hat{B}|\alpha_{3}\rangle = |\alpha_{1}\rangle - i\sqrt{2}|\alpha_{2}\rangle + |\alpha_{3}\rangle.$$
(2)

Beweisen Sie, dass die Operatoren \hat{A} und \hat{B} hermitesch sind und einen Satz von gemeinsamen Zuständen besitzen. (3 Punkte)

(b) Betrachten wir ein Teilchen der Masse m in einem Quadratpotential, das durch die Frequenz ω beschrieben ist. Bestimmen Sie nicht-verschwindende Matrixelemente q_{nm} und p_{nm} von den Operatoren \hat{q} bzw. \hat{p} in der Basis $\{|n\rangle\}$, die in Aufgabe 7.1 eingeführt wurde. Bestimmen Sie auch die Dimension dieser Matrizen q_{nm} und p_{nm} (5 Punkte)

Aufgabe 11.2: Satz von Ehrenfest (8 Punkte)

(a) Zeigen Sie im Rahmen der Schrödingerschen Wellenmechanik das Ehrenfestsche Theorem für ein Teilchen der Masse m in einer Dimension, das sich in einem Potential V(q) bewegt:

$$\frac{d}{dt} \langle \hat{q} \rangle = \frac{\langle \hat{p} \rangle}{m} \quad \text{und} \quad \frac{d}{dt} \langle \hat{p} \rangle = -\langle \hat{V}'(q) \rangle. \tag{4 Punkte}$$

(b) Zeigen Sie weiter, dass der Ortserwartungswert $\langle \hat{q} \rangle$ die Newtonsche Bewegungsgleichung

$$m\frac{d^2}{dt^2}\langle \hat{q} \rangle = -\hat{V}'(\langle q \rangle) \tag{4}$$

erfüllt, falls $\hat{V}(q)$ ein Polynom höchstens zweiten Grades in q ist. (3 Punkte)

(c) Angenommen, $\hat{V}(q)$ sei kein Polynom höchstens zweiten Grades in q. Wie geartet muss eine Wellenfunktion sein, damit die Newtonsche Bewegungsgleichung zumindest näherungsweise gilt? (Qualitative Antwort genügt) (1 Punkt)

Aufgabe 11.3: Das Schrödinger-Bild und Heisenberg-Bild (8 Punkte)

- (a) Für ein abgeschlossenes System $(\partial \hat{H}/\partial t = 0)$ sei \hat{A}_S eine Observable im Schrödinger-Bild, \hat{A}_H die entsprechende des Heisenberg-Bildes. Beide Bilder mögen zur Zeit $t_0 = 0$ übereinstimmen. Der Anfangszustand $|\psi(t_0)\rangle$ sei Eigenzustand von \hat{A} . Zeigen Sie, dass $|\psi(t)\rangle$ für t > 0 Eigenzustand zu $\hat{A}_H(-t)$ mit demselben Eigenwert ist. (4 Punkte)
- (b) Ein kräftefreies Teilchen besitze die Masse m. Bestimmen Sie die zeitabhängigen Operatoren $\hat{q}_H(t)$ und $\hat{p}_H(t)$. Berechnen Sie auch die folgenden Kommutatoren: $[\hat{q}_H(t), \hat{q}_H(t')]$, $[\hat{p}_H(t), \hat{p}_H(t')]$ und $[\hat{q}_H(t), \hat{q}_H(t')]$. (4 Punkte)