Moderne Theoretische Physik I SS 2021

Prof. Dr. Jörg Schmalian Vanessa Gall, Dr. Roland Willa Blatt 6 Abgabe 04.06.2021

1. 1d Potentialprobleme

Wir betrachten zeitunabhängige Probleme in einer räumlichen Dimension. Folgende Aufgaben wiederholen und ergänzen Aufgaben aus der Vorlesung:

- a) Zeigen Sie, dass die Ableitung $\psi'(x)$ der Wellenfunktion an einer Potentialstufe stetig und an einem Delta-Potential unstetig ist. Integrieren Sie dazu die Schrödingergleichung über ein infinitesimales Intervall und nutzten aus, dass $\psi(x)$ stetig ist.
- b) Es sei das Potential $V(x) = V_0\Theta(x)$ mit der Heaviside Funktion $\Theta(x)$. Finden Sie die allgemeine Lösung der Schrödingergleichung für x < 0 und x > 0 für ein Teilchen mit Energie $0 < E < V_0$. Bestimmen Sie dann die gesamte Wellenfunktion.
- c) Es sei das Potential $V(x) = \begin{cases} -V_0 & |x| < a/2 \\ 0 & |x| \ge a/2 \end{cases}$. Lösen Sie die Schrödingergleichung für ein Teilchen mit $-V_0 < E < 0$. Finden Sie dazu die Lösung für jedes Intervall mit konstantem Potential, und fügen Sie die Teillösungen dann zusammen. Verwenden Sie die Parität $x \to -x$ des Problems. Die Bedingung für die Energie E ist nicht mehr analytisch lösbar. Diskutieren Sie, wie das Lösen graphisch erfolgen kann.

2. Kohärente Zustände im harmonischen Oszillator

Wir betrachten einen harmonischen Oszillator in einer räumlichen Dimension.

$$\hat{H} = \hat{p}^2 / 2m + m\omega^2 \hat{x}^2 / 2 \tag{1}$$

- a) Wiederholen Sie die Herleitung aus der Vorlesung für die algebraische Lösung bis zur Darstellung der Energieeigenzuständen $\{|n\rangle\}$ aus den Leiteroperatoren \hat{a} und \hat{a}^{\dagger} . Fassen Sie die wichtigsten Punkte stichpunktartig zusammen.
- b) Bestimmen Sie die Unschärfe $\langle (\Delta \hat{x})^2 \rangle \langle (\Delta \hat{p})^2 \rangle$ in Abhängigkeit des Zustands $|n\rangle$.
- c) Berechnen Sie die Unschärfe $\langle (\Delta \hat{x})^2 \rangle \langle (\Delta \hat{p})^2 \rangle$ für einen Eigenzustand von \hat{a} , d.h. $\hat{a} | \alpha \rangle = \alpha | \alpha \rangle$. Hier ist α eine komplexe Zahl. Was fällt Ihnen dabei auf?
- d) Leiten Sie die Darstellung von $|\alpha\rangle$ in der Basis $\{|n\rangle\}$ her. Nutzen Sie $\mathbb{I} = \sum_n |n\rangle\langle n|$. Zeigen Sie, dass die Darstellung die zwei äquivalenten Formen besitzt, nämlich

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n} \frac{\alpha^n}{\sqrt{n!}} |n\rangle = e^{-|\alpha|^2/2 + \alpha \hat{a}^{\dagger}} |0\rangle.$$
 (2)

- e) Zeigen Sie, dass $\langle x \rangle = \langle \alpha | \hat{x} | \alpha \rangle = \sqrt{2} x_0 \text{Re}(\alpha)$ und $\langle p \rangle = \langle \alpha | \hat{p} | \alpha \rangle = \sqrt{2} p_0 \text{Im}(\alpha)$ gilt und bestimmen Sie x_0 und p_0 .
- f) Untersuchen Sie, die zeitliche Entwicklung

$$|\alpha\rangle(t) = e^{-(i/\hbar)\hat{H}t}|\alpha\rangle \tag{3}$$

- des Zustands $|\alpha\rangle$ und zeigen Sie, dass gilt $|\alpha\rangle(t) = e^{-it/2t_0}|\alpha(t)\rangle$ mit $\alpha(t) = e^{-it/t_0}\alpha$. Finden Sie t_0 .
- g) Zum krönenden Schluss bestimmen Sie welcher Differentialgleichung $\alpha(t)$ genügt. Schliessen Sie daraus auf die entsprechenden Differentialgleichungen für $\langle x(t) \rangle = \langle \alpha(t) | \hat{x} | \alpha(t) \rangle$ und $\langle p(t) \rangle = \langle \alpha(t) | \hat{p} | \alpha(t) \rangle$.

3. 2d Harmonischer Oszillator

Wir betrachten nun einen isotropen harmonischen Oszillator in zwei Dimensionen.

$$\hat{H} = (\hat{p}_x^2 + \hat{p}_y^2)/2m + m\omega^2(\hat{x}^2 + \hat{y}^2)/2 \tag{4}$$

- a) Berechnen Sie für die Operatoren $\hat{a}_x, \hat{a}_x^{\dagger}, \hat{a}_y,$ und \hat{a}_y^{\dagger} die Kommutator-Beziehungen.
- b) Verfahren Sie analog zum eindimensionalen Fall und bringen Sie den Hamiltonoperator in die Form (geben Sie den Wert für die Grundzustandsenergie E_0 an)

$$\hat{H} = \hbar\omega(\hat{N}_x + \hat{N}_y) + E_0. \tag{5}$$

Bestimmen Sie die zugehörigen Eigenzustände (es ist natürlich die Dirac-Notation $|n_x, n_y\rangle$ zu nutzen). Berechnen Sie die Entartung für jede Eigenenergie.

- c) Zeigen Sie, dass der Drehimpuls $\hat{L}_z = \hat{x}\hat{p}_y \hat{y}\hat{p}_x$ die Form $-i\hbar(\hat{a}_x^{\dagger}\hat{a}_y \hat{a}_y^{\dagger}\hat{a}_x)$ annimmt. Verifizieren Sie auch, dass \hat{L}_z mit dem Hamilton-Operator kommutiert. Prüfen Sie dann, ob die Eigenzustände $|n_x,n_y\rangle$ von \hat{H} auch Eigenzustände von \hat{L}_z sind.
- d) Führen Sie Operatoren $\hat{a}_{\pm}^{\dagger} = (\hat{a}_{x}^{\dagger} \pm i\hat{a}_{y}^{\dagger})/\sqrt{2}$ ein. Geben Sie die zugehörigen adjungierten Operatoren \hat{a}_{\pm} an und berechnen Sie dafür die Kommutator-Beziehungen.
- e) Definieren Sie die Quantenzahl-Operatoren $\hat{N}_{\pm} = \hat{a}_{\pm}^{\dagger} \hat{a}_{\pm}$ ein und drücken Sie den Hamilton *und* den Drehimpuls-Operator in diesen Grössen aus. Interpretieren Sie die physikalische Bedeutung von \hat{N}_{\pm} .
- f) Finden Sie zum Schluss einen Satz an Zuständen die gleichzeitig Eigenzustände des Hamilton- und des Drehimpuls-Operators sind. Kann nun ein Zustand mit den beiden Observablen (\hat{H}, \hat{L}_z) eindeutig definiert werden?