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*x Problem 1 x Dirac Delta Distribution

We consider the family of functions d,(z) = ae~™"/7" and want to show that in the limit o — 0, it corresponds to
the Dirac distribution d(x). The latter is not a function in the strict sense but rather a probability distribution. It
is defined such that the probability density is zero when x # 0. However, it is still normalized so that the integral
over the real axis equals 1. This means that the probability distribution is non-zero at = = 0.

1. Determine « so that each function d,(z) is normalized according to

/OO dad, (z) = 1. (1)

2. Show that for each fixed x, the limit lirrb 05 (x) = 6(x) is satisfied.
o—r

3. Determine, using the o — 0 limiting behavior (f is a smooth function)

/oo dzd, () f(x) — /_OO dzé(z) f(x) = f(0), (2)

what is the analogous limiting behavior of / dzdl (z) f(z).

4. Prove the relationship
e 1
[ Ao (1) = 3 ey (3)

where x; are the simple zeros of the function f(x). (Simple zero means that the function’s derivative is finite
there. Assume f is smooth and has only simple zeros.)

Solution 1

1. The integral over the Gaussian distribution yields

o0
2, 2
/ dzae /7 = ao/7,,

— 00

which is normalized to 1 when o=t = o/7.



2. First, we note that the normalization condition is fulfilled by choosing a~! = oy/7r. Then, a case distinction is

necessary: For x =0, §,(0) = @ = 1/(y/m0) — oo. Otherwise, the limit is always dominated by the exponential
behavior, and we find 8, (z) = (1/y/To)e™* /" — 0. This can be demonstrated explicitly by:

o 1
o — =l4zt+..>ltree <
6_m2/02
o0 o 0—0 02 + 22

if x # 0. Thus, in the limit o — 0, the family of functions d,(x) converges point-wise towards the Dirac Delta
Distribution.

Math aside: point-wise convergence is not the same as convergence under the integral. This is a more involved
thing to prove which we decided not to bother you with. Counterexample: the function

o, for x =0,

Ay (x) = 2
(z) {1em2/" , forx #0,

is also normalized to 1 (since points have zero measure) and converges point-wise to 6(x) when ¢ — +oo
(opposite limit), but under the integral it does not go to d(z). The physical reason is that A, (x) gets broader
instead of narrower as o is increased.

3. Using integration by parts, we immediately find
/ dz é)(z) f(x) = [05(2) f(2)], — / dz 6, (z) f () = —f'(0).

A slightly less elegant but still instructive derivation is based on the observation that &, (z) = (—2x/02)d, ().
Since d,(z) particularly emphasizes the values around x = 0, we can express f(z) as a Taylor series. Thus,

[%¢mumﬂMz/fdﬂf%w%@@nﬂm+fmm.

The first term in the square brackets yields an odd integrand (thus, the integral vanishes). The second term is
even and yields

> ! ~ > 7f/(0) g 71’2/02 _ g > 7-]”(0) 79:2/02 gl
| aws@r@ s [ LD e o g TR e - ),

4. Since the ¢ distribution, according to our definition, is zero when its argument is non-zero, we can confine
ourselves to a region of length 2¢ > 0 around each respective zero. In this region, the function is well described
by its linear Taylor expansion, i.e., f(z) = (x — ;) f'(z;), thus,

/ dz o (f Z/:ﬁedxé Z/%E dzd ((z — @) /(1))

i—€

Next, we use the substitution y = (x — x;) f'(z;) and obtain

o5 (0 — 20 (a0 S s (@) 1
Z/ dzd (@~ m)f (s Z/ 30 =2 TRy T

[ (zi )e i

where we have used that depending on the sign of f/(x;), the interval is traversed straightly or in reverse.



* Problem 2 x Expectation values of a Gaussian wave function

Consider the wave function (o > 0):
1 _(e—zg)?

1/}(.%) = (27’(’0’2)1/46

1. Show that the given wave function is normalized: [~ |y (z)[*> = 1.

2. Calculate the expectation value of x:

- " del(@) e (5)

— 00

This is the first moment of the distribution, also called the mean.
3. Calculate the expectation value of z2:

@ = [ " dal(a) 2 (6)

Using these two quantities, we can calculate the second moment of the distribution, Az = \/(z2) — (z)2. This
quantity is also called the standard deviation.

4. Calculate the expectation value of the momentum p:

)= [ v o) (7

— 00

5. Calculate the expectation value of p? and standard deviation of the p:

= [ @) () o) 0

(4)

Ap =/ (p?) — (p)? (9)

6. Calculate the product Az - Ap. Compare it with Heisenberg’s uncertainty relation Az - Ap > h/2.

Solution 2

—ax

1. Using the Gaussian integral formula: [~ e P = VE (a>0),

o 9 1 o _ (e—wg)? 1 o 2
- d$|w($)| = W - dze 202 = W . dye 202 ( Yy=x — .’L'O) =1.

2

(w—wq)?

R > 1 > (e—ag)? 1 oo 2
() = /_OO dazxlp(z)]* = (27702)1/2/_00 dr ze™ 28 = (27T02)1/2/_oo dy (y + z0)e™ %7 (- y = & — o)
1 y .

~ G | e =

3. As in the previous solution, we first perform a change of variables, y = x — xg, and do the integral.

. 1 > _2 1 > 2
(2% = (27T02)1/2/ dy (y + mp)?e 207 = (27TCT2)1/2/ dy(y® + 220y + x5 )e 202

1 o e
- (2m2)1/2/ dy(y® + ad)e 3 = 0% 4 23



where we used the following identity:

8 o 2 o [t 1xl/?
2—am2_
:>/ dx xe 27a3/2

Then the standard deviation is given by:

4.
. h T — X9 (z==zg) . h1 R
(p) = (2mo2)1/2 / du 202 _7ﬁ<<x> B xo) =0
5.
1 T — g _(2—=zq)? 1 1 (z — =z )2 _ (w—xg)?
2 = — 0 TJL = —m———- _——_— 70 402
0p(x) = (2r02)1/4 a’”( 252 ¢ ) (2mo2)1/4 ( 202 dod )6
B 1 (x — x0)?
=(m g+ Ju@)
Therefore
R o 1 (v — 1) K2 1 R
2y _ 52 L 2 _ L e 2
W) =h /_oo dx202 (1 202 )‘w(m)‘ 202 (1 202 ((27) + o 2w0<x>))
h? 2 2
@( <i>—0’ +$07 <§?>:.CL'0)
Then
h

6. Combining with the results for Az of part 3, we get

Am~Ap:g

which is as small as it can get, in light of Heisenberg’s uncertainty relation. So Gaussian wave functions realize
the extremum of the lower bound on the x and p uncertainties.

Problem 3 Spectral density in a box

Consider an electromagnetic field in a cubic box with volume V = L3. A simple estimate for the number of free
electromagnetic modes can be obtained by requiring periodic boundary conditions on the vector potential (wx = c|k|)

r,t) = Z A et kx—wit) (10)
k

1. Show that this condition leads to a quantization of the k-states and determine this. Specifically, show that
k= (nz,ny,nz) with ng,ny,n, € Z.

2. Use the quantization condition from 1 to derive an expression for the number of modes dN in the interval
[k, k + dk]; here k = |k|. Keep in mind that the vector potential is transverse to the k-vector, i.e., A -k = 0.



3. Calculate the spectral energy density u(w) (u(w)dw is the energy per volume in the interval [w,w + dw]) in
thermal equilibrium. To do this, use the classic equipartition principle, which states that each mode contributes
the energy kpT. Explain why this assumption is problematic.

4. Planck’s law of radiation
nw3 1
m2e3 enw/kBT —1

(11)

avoids the problem mentioned above. Determine the behavior of this radiation law at small and large frequencies
and compare with the results of part 3. Specify the units of n and interpret the quantity nw.

u(w) =

Solution 3

1. From the periodic boundary condition,

A(x=0,y,2,t) = Az = L,y, 2,t),
A(z,y=0,21t) = Az,y = L,z,1),
A(z,y,z=0,t) = A(z,y,z = L,t).

Using Eq. and the above conditions, we can obtain following conditions for the momentum k:

ezkzL _ ezkyL _ ezkzL -1
2T,
z,Y,2
= kyy. = —7 Ngy,z € 4.

Overall, the k-space is quantized with each k-value taking up a cubic volume Ak, Ak, Ak, = (2/L)3.

2. The interval [k, k + dk| describes a spherical shell in k-space with volume 47k?dk. The number of modes within
this volume is given by

Vk2dk

AN = 2(4nk*dk)/(Ak)? = —

™

where the factor 2 comes from the fact that there are two transverse mode for each k.

3. In thermal equilibrium, every classical mode carries an energy kpT. We also use the dispersion relation
wy = clk|. From this we conclude that
k2dk kT

2
—_— = ——w dw.
w2 m2c3

u(w)dw = kgTdN/V = kgT

Therefore u(w) = i?g;wQ. This energy density is not bounded and leads to a UV catastrophe (divergence at

large frequencies).

4. At low frequencies, a Taylor expansion in w of Eq. provides the classic result which is obtained in 3:

kT
U (w) = u(w) = U
At high frequencies one instead finds
3
_ W kT MY _nw/kpT
u( )— ﬁe /e —me n B ucl(W).

Here, nw has the dimensions of energy, whereas n has the dimension of an action. The exponential suppression
of mode contributions for frequencies w > kpT'/n indicates thermal activation of a discrete excitation spectrum.
nw is the energy quantum of modes with frequency w.



