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⋆ Problem 1 ⋆ Dirac Delta Distribution

We consider the family of functions δσ(x) = αe−x2/σ2

and want to show that in the limit σ → 0, it corresponds to
the Dirac distribution δ(x). The latter is not a function in the strict sense but rather a probability distribution. It
is defined such that the probability density is zero when x ̸= 0. However, it is still normalized so that the integral
over the real axis equals 1. This means that the probability distribution is non-zero at x = 0.

1. Determine α so that each function δσ(x) is normalized according to∫ ∞

−∞
dxδσ(x) = 1. (1)

2. Show that for each fixed x, the limit lim
σ→0

δσ(x) = δ(x) is satisfied.

3. Determine, using the σ → 0 limiting behavior (f is a smooth function)∫ ∞

−∞
dxδσ(x)f(x) →

∫ ∞

−∞
dxδ(x)f(x) = f(0), (2)

what is the analogous limiting behavior of

∫ ∞

−∞
dxδ′σ(x)f(x).

4. Prove the relationship ∫ ∞

−∞
dx δ (f(x)) =

∑
i

1

|f ′(xi)|
(3)

where xi are the simple zeros of the function f(x). (Simple zero means that the function’s derivative is finite
there. Assume f is smooth and has only simple zeros.)

Solution 1

1. The integral over the Gaussian distribution yields∫ ∞

−∞
dxαe−x2/σ2

= ασ
√
π, ,

which is normalized to 1 when α−1 = σ
√
π.
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2. First, we note that the normalization condition is fulfilled by choosing α−1 = σ
√
π. Then, a case distinction is

necessary: For x = 0, δσ(0) = α = 1/(
√
πσ) → ∞. Otherwise, the limit is always dominated by the exponential

behavior, and we find δσ(x) = (1/
√
πσ)e−x2/σ2 → 0. This can be demonstrated explicitly by:

ex =
∑
n

xn

n!
= 1 + x+ ... ≥ 1 + x⇔ e−x ≤ 1

1 + x

⇒ 0 ≤ lim
σ→0

e−x2/σ2

σ
≤ lim

σ→0

σ

σ2 + x2
= 0 ,

if x ̸= 0. Thus, in the limit σ → 0, the family of functions δσ(x) converges point-wise towards the Dirac Delta
Distribution.

Math aside: point-wise convergence is not the same as convergence under the integral. This is a more involved
thing to prove which we decided not to bother you with. Counterexample: the function

∆σ(x) =

{
σ, for x = 0,

1
σ
√
π
e−x2/σ2

, for x ̸= 0,

is also normalized to 1 (since points have zero measure) and converges point-wise to δ(x) when σ → +∞
(opposite limit), but under the integral it does not go to δ(x). The physical reason is that ∆σ(x) gets broader
instead of narrower as σ is increased.

3. Using integration by parts, we immediately find∫ ∞

−∞
dx δ′σ(x)f(x) = [δσ(x)f(x)]

∞
−∞ −

∫ ∞

−∞
dx δσ(x)f

′(x) → −f ′(0) .

A slightly less elegant but still instructive derivation is based on the observation that δ′σ(x) = (−2x/σ2)δσ(x).
Since δσ(x) particularly emphasizes the values around x = 0, we can express f(x) as a Taylor series. Thus,∫ ∞

−∞
dx δ′σ(x)f(x) ≈

∫ ∞

−∞
dx (−2x/σ2)δσ(x) [f(0) + f ′(0)x] .

The first term in the square brackets yields an odd integrand (thus, the integral vanishes). The second term is
even and yields∫ ∞

−∞
dx δ′σ(x)f(x) ≈

∫ ∞

−∞
dx

−f ′(0)√
π

∂

∂σ
e−x2/σ2

=
∂

∂σ

∫ ∞

−∞
dx

−f ′(0)√
π

e−x2/σ2

= −f ′(0).

4. Since the δ distribution, according to our definition, is zero when its argument is non-zero, we can confine
ourselves to a region of length 2ϵ > 0 around each respective zero. In this region, the function is well described
by its linear Taylor expansion, i.e., f(x) = (x− xi)f

′(xi), thus,∫ ∞

−∞
dx δ (f(x)) =

∑
i

∫ xi+ϵ

xi−ϵ

dx δ (f(x)) =
∑
i

∫ xi+ϵ

xi−ϵ

dx δ ((x− xi)f
′(xi))

Next, we use the substitution y = (x− xi)f
′(xi) and obtain

∑
i

∫ xi+ϵ

xi−ϵ

dx δ ((x− xi)f
′(xi)) =

∑
i

∫ f ′(xi)ϵ

−f ′(xi)ϵ

dy

f ′(xi)
δ(y) =

∑
i

sign (f ′(xi))

f ′(xi)
=

∑
i

1

|f ′(xi)|
,

where we have used that depending on the sign of f ′(xi), the interval is traversed straightly or in reverse.
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⋆ Problem 2 ⋆ Expectation values of a Gaussian wave function

Consider the wave function (σ > 0):

ψ(x) =
1

(2πσ2)1/4
e−

(x−x0)2

4σ2 (4)

1. Show that the given wave function is normalized:
∫∞
−∞ |ψ(x)|2 = 1.

2. Calculate the expectation value of x:

⟨x̂⟩ =
∫ ∞

−∞
dx|ψ(x)|2x. (5)

This is the first moment of the distribution, also called the mean.

3. Calculate the expectation value of x2:

⟨x̂2⟩ =
∫ ∞

−∞
dx|ψ(x)|2x2. (6)

Using these two quantities, we can calculate the second moment of the distribution, ∆x =
√
⟨x2⟩ − ⟨x⟩2. This

quantity is also called the standard deviation.

4. Calculate the expectation value of the momentum p̂:

⟨p̂⟩ =
∫ ∞

−∞
dxψ∗(x)

ℏ
i
∂xψ(x). (7)

5. Calculate the expectation value of p̂2 and standard deviation of the p̂:

⟨p̂2⟩ =
∫ ∞

−∞
dxψ∗(x)

(ℏ
i

)2

∂2xψ(x), (8)

∆p =
√
⟨p̂2⟩ − ⟨p̂⟩2 (9)

6. Calculate the product ∆x ·∆p. Compare it with Heisenberg’s uncertainty relation ∆x ·∆p ≥ ℏ/2.

Solution 2

1. Using the Gaussian integral formula:
∫∞
−∞ e−ax2

=
√

π
a (a > 0),∫ ∞

−∞
dx|ψ(x)|2 =

1

(2πσ2)1/2

∫ ∞

−∞
dxe−

(x−x0)2

2σ2 =
1

(2πσ2)1/2

∫ ∞

−∞
dye−

y2

2σ2 (∵ y = x− x0) = 1.

2.

⟨x̂⟩ =
∫ ∞

−∞
dxx|ψ(x)|2 =

1

(2πσ2)1/2

∫ ∞

−∞
dx xe−

(x−x0)2

2σ2 =
1

(2πσ2)1/2

∫ ∞

−∞
dy (y + x0)e

− y2

2σ2 (∵ y = x− x0)

=
1

(2πσ2)1/2

∫ ∞

−∞
dy x0e

− y2

2σ2 = x0.

3. As in the previous solution, we first perform a change of variables, y = x− x0, and do the integral.

⟨x̂2⟩ = 1

(2πσ2)1/2

∫ ∞

−∞
dy (y + x0)

2e−
y2

2σ2 =
1

(2πσ2)1/2

∫ ∞

−∞
dy(y2 + 2x0y + x20)e

− y2

2σ2

=
1

(2πσ2)1/2

∫ ∞

−∞
dy(y2 + x20)e

− y2

2σ2 = σ2 + x20
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where we used the following identity:

− ∂

∂a

∫ ∞

−∞
dxe−ax2

=

∫ ∞

−∞
dx x2e−ax2

= − ∂

∂a

√
π

a
=

1

2

π1/2

a3/2

⇒
∫ ∞

−∞
dx x2e−ax2

=
1

2

π1/2

a3/2
.

Then the standard deviation is given by:

∆x =
√

⟨x̂2⟩ − ⟨x̂⟩2 = σ.

4.

⟨p̂⟩ = −ℏ
i

1

(2πσ2)1/2

∫ ∞

−∞
dx
x− x0
2σ2

e−
(x−x0)2

4σ2 = −ℏ
i

1

2σ2

(
⟨x̂⟩ − x0

)
= 0

5.

∂2xψ(x) =
1

(2πσ2)1/4
∂x

(
− x− x0

2σ2
e−

(x−x0)2

4σ2

)
=

1

(2πσ2)1/4

(
− 1

2σ2
+

(x− x0)
2

4σ4

)
e−

(x−x0)2

4σ2

=
(
− 1

2σ2
+

(x− x0)
2

4σ4

)
ψ(x).

Therefore

⟨p̂2⟩ = ℏ2
∫ ∞

−∞
dx

1

2σ2

(
1− (x− x0)

2

2σ2

)
|ψ(x)|2 =

ℏ2

2σ2

(
1− 1

2σ2
(⟨x̂2⟩+ x20 − 2x0⟨x̂⟩)

)
=

ℏ2

4σ2
(∵ ⟨x̂2⟩ = σ2 + x20, ⟨x̂⟩ = x0)

Then

∆p =
√

⟨p̂2⟩ − ⟨p̂⟩2 =
ℏ
2σ

6. Combining with the results for ∆x of part 3, we get

∆x ·∆p = ℏ
2

which is as small as it can get, in light of Heisenberg’s uncertainty relation. So Gaussian wave functions realize
the extremum of the lower bound on the x and p uncertainties.

Problem 3 Spectral density in a box

Consider an electromagnetic field in a cubic box with volume V = L3. A simple estimate for the number of free
electromagnetic modes can be obtained by requiring periodic boundary conditions on the vector potential (ωk = c|k|)

A(r, t) =
∑
k

Ake
i(k·x−ωkt) (10)

1. Show that this condition leads to a quantization of the k-states and determine this. Specifically, show that
k = 2π

L (nx, ny, nz) with nx, ny, nz ∈ Z.

2. Use the quantization condition from 1 to derive an expression for the number of modes dN in the interval
[k, k + dk]; here k = |k|. Keep in mind that the vector potential is transverse to the k-vector, i.e., A · k = 0.
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3. Calculate the spectral energy density u(ω) (u(ω)dω is the energy per volume in the interval [ω, ω + dω]) in
thermal equilibrium. To do this, use the classic equipartition principle, which states that each mode contributes
the energy kBT . Explain why this assumption is problematic.

4. Planck’s law of radiation

u(ω) =
ηω3

π2c3
1

eηω/kBT − 1
(11)

avoids the problem mentioned above. Determine the behavior of this radiation law at small and large frequencies
and compare with the results of part 3. Specify the units of η and interpret the quantity ηω.

Solution 3

1. From the periodic boundary condition,

A(x = 0, y, z, t) = A(x = L, y, z, t),

A(x, y = 0, z, t) = A(x, y = L, z, t),

A(x, y, z = 0, t) = A(x, y, z = L, t).

Using Eq. (10) and the above conditions, we can obtain following conditions for the momentum k:

eikxL = eikyL = eikzL = 1

⇒ kx,y,z =
2πnx,y,z

L
, nx,y,z ∈ Z.

Overall, the k-space is quantized with each k-value taking up a cubic volume ∆kx∆kx∆kx = (2π/L)3.

2. The interval [k, k+dk] describes a spherical shell in k-space with volume 4πk2dk. The number of modes within
this volume is given by

dN = 2(4πk2dk)/(∆k)3 =
V k2dk

π2

where the factor 2 comes from the fact that there are two transverse mode for each k.

3. In thermal equilibrium, every classical mode carries an energy kBT . We also use the dispersion relation
ωk = c|k|. From this we conclude that

u(ω)dω = kBTdN/V = kBT
k2dk

π2
=
kBT

π2c3
ω2dω.

Therefore u(ω) = kBT
π2c3ω

2. This energy density is not bounded and leads to a UV catastrophe (divergence at
large frequencies).

4. At low frequencies, a Taylor expansion in ω of Eq. (11) provides the classic result which is obtained in 3:

ucl(ω) = u(ω) =
kBT

π2c3
ω2.

At high frequencies one instead finds

u(ω) =
ηω3

π2c3
e−ηω/kBT =

ηω

kBT
e−ηω/kBTucl(ω).

Here, ηω has the dimensions of energy, whereas η has the dimension of an action. The exponential suppression
of mode contributions for frequencies ω ≫ kBT/η indicates thermal activation of a discrete excitation spectrum.
ηω is the energy quantum of modes with frequency ω.
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