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+x Problem 1 x Particle in a box

Consider a particle of mass m that lies in the infinitely deep well

f L
V(z) = 0, or0<.:17< , (1)
400, otherwise.

1. If (t = 0) = xp € (0, L) and p(t = 0) = pg # 0, what is the solution of the classical equations of motion? By
imposing the Sommerfeld quantization condition

T
]{dxp = / dt@(t)p(t) =n - 27h, (2)
0
where the integral goes over one period of motion (T is the time period) and n € N, find what py must equal.
Calculate the corresponding energy.

2. If the wavefunction of the particle at t = 0 equals
Y(x) = ay sin(nymz/L) 4+ ag sin(nema /L), (3)
where a1,a2 € C and ny1,no € N with a1 # 0,as # 0,n; # ng, then what is the wavefunction at later times?

3. Now using this wavefunction, calculate the corresponding expectation values of & and p = —ihd, at later times.
For concreteness, set ny = 1 and ny = 2.

4. According to Ehrenfest’s theorem:

o (@)= 2 B0 (p) = — (V'()) (4)

m

Do the results of parts 1 and 3 agree with this? Explain any apparent disagreements.



Solution 1

1. The solution of the classical equations of motion is

xo + 2ot for%<t<%ztl,

L—%(t—tl), fOI‘t1<t<t1+T/25t2,
l’(t): %(t—tz% for t2<t<t2+T/2£t3,

L—%(t—tg), fOI‘t3<t<t3—|-T/25t4,

etc.

po,  for mET0) oy o mllozo) =4,

Po Po -y
—Po, fOI‘t1<t<t1+T/QEt2,

p(t) = po, forta<t<to+T/2=1s,
—Po, for t3<t<t3+T/2Et47
etc.

when py > 0, and analogously for pg < 0. So the particle moves uniformly, bouncing of the walls every
T/2 = mL/ |po| second, thereby resulting in a “triangle wave” dependence of x(t). The Sommerfeld quantization
condition yields

T 2
/ at?D iy =7 B0y o
0 m m

nm

The energy , 2 ,
_ P _ (@)
2m  2m \ L

n
agrees with the quantum result.

2. Since 1) is a superposition of stationary states,
O(x,t) = are Fmt/Msin(nyma /L) + age ™ Fr2t/ P gin(nyma /L)

where E,, is given above. One may also check this explicitly using iid;e"P¥/" = Fe 1Bt/" and 92 sin(kx) =
—k?sin(kx).

3. We have
L
@) = [ dow(@toute)
0
L L
= |a1|2/ dxsinZ(klx)x+\a2|2/ da sin?(kyx )z
0 0
L
+ 2|aq] - |a2|cosx(t)/ d sin(kx) sin(kqx)x
0

where ki = ny7/L, ko = now/L, az/a; = |az/a1|e¥, and x(t) = (E,, — En,)t/h+ . By symmetry, the first
two integrals equal L/2 so

I L
(&) = 5 + 2]aq] - |az| cos X(t)/ dasin(kix) sin(kox)x.
0



Similarly
L
() = —ih [ dov @ Dol
0
L L
= —ihky |a1|2/ da sin(kix) cos(ki1x) — ihka |a2|2/ da sin(kex) cos(kzx)
0 0
L . .
—ihlaq]- |a2|/ dz [erIX(t) sin(ky2) cos(kox) + ke X® sin(kyz) cos(kyx)| .
0

This time the first two integrals o fOL dz sin(2kz) vanish because cos(2kL) = 1, whereas in the third integral
the ki cos(k1z) = 0, sin(k12) can be partially integrated so as to move the derivative onto the sin(ks2). The
boundary terms vanish in the process. The result is

L
(py = bk - 2|aq] - |az| sin x(¢) / da sin(ki2) cos(kax).
0

Finally, setting ny = 1 and no = 2 and evaluating the integrals we get

. L —8L2
<x>:5+2|a1|~|a2|cosx(t)~w, (5)

R . —2L
(py = bk - 2|a1] - |ag|sin x(t) - 3 (6)

T
4. The Ehrenfest relation for & does indeed hold in an obvious way:
N D —4h .

08 = 2 = 22 g o] o sin (). ™

Less obvious is the p Ehrenfest relation. Naively, V'(x) = 0 so it’s violated. However, this isn’t quite correct
since V' (x) diverges at © = 0, L so its derivative diverge there too. More formally, one can consider a finite well

Vi () 0, for0 <z <L,
xT) =
v +U, otherwise,

whose
Via) = U5z ~ L)  6(z)]

and then take the limit U — oo to show that 0, (p) = — (V'(&)) indeed holds. To get a grade, one only needs to

notice that the resolution of the apparent disagreement between V'(z) = 0 and 9; (p) # 0 lies in the boundary.
* Problem 2 x Delta potential well
Consider the delta potential well

V(z) = -Voi(x), (8)

where Vg > 0.

1. By integrating the stationary Schrodinger equation from z = —e to € for small € > 0, derive the condition that
the wavefunction must obey at x = 0. You may assume that v is continuous at x = 0.

2. Solve the stationary Schrodinger equation for bounded states, that is, find all eigenfunctions of the Hamiltonian
which have a finite norm.

3. What are the corresponding energies? Explicitly calculate them by evaluating the integral arising in the

Hamiltonian average <I:I > Evaluate the kinetic energy in two ways: as <w|f)2@/}> and as (py|py).



Solution 2

1. Starting from

_h2?
5,0 (@) = Vo 8(2)9 () = By()

we find that

_ K2

iyl da 0% (x) — VO/G dz 6(z)¢(z) = E E dap(x)

2m —e —€ —€
2

— S [0+ = ¥(=0)] = Vou(0) = 0

for infinitesimal € > 0.

2. For E > 0, we get oscillatory solutions which we cannot normalize. The normalizeable eigenfunctions therefore
have E < 0 and yield exponential solutions for x # 0. These solutions must decay at infinity, so there is only
one option:

U(a) = Al
where h;;f = —F. The x = 0 condition gives
—h?
% [A(*li) — Alﬁ:] — VOA =0
mV()
—— K = F

Evidently, there is only one x that solves this, and therefore only one bounded state associated with a delta
potential well. (Later in the course we shall also study unbounded state which arise here.)

3. Setting A = /k normalizes 1(x) to unity. Moreover
pY(x) = ihk3/? sgn(z)e 1!
and
PPo(x) = 232 [26(x) — K] ele].

Evaluating
(¥]p*y) = / dzh?k? [26(z) — k] e 217l = B242,

o
AlA _ dxh2ﬁ3e—2&|x| _ h2/i2
(Pv1p)

— 00

agrees. Likewise evaluating

(i) = 070, / Z A (@) [~V 8(2)] (x)

2m
K2 k2 h2k2
2m or 2m

agrees with the previous.



Problem 3 Linear differential equations as Schrodinger equations

1. Consider the wave equation describing the vibrations of a string:
Otu(z,t) = 02u(z,t), (9)

where the speed of sound has been set to unity. Derive the effective Hamiltonian H (which is a 2 x 2 matrix
here) arising in

io,00) = Hi (10)

which describes the evolution of the multicomponent wavefunction

b= (u—l—i@tu). (1)

u — 10u

oy = ((1) _01) . (12)

2. Physically, u*(x,t) = u(z,t) must be real. What is the analogous reality condition on ¥ (x,t)? Show that
Eq. (10) preserves it.

Here

3. Next, consider Maxwell’s equations (with eg = po = 1)

V.-E=p, V-B=0, (13)
V x E=-9,B, V x B=j+0,E. (14)

Introduce the complex three-component field

¢ = B —iE. (15)
Find the effective Hamiltonian (which is a 3 x 3 operator matrix) and the right-hand side in

(10, — H)p =7 (16)
Replace all spatial derivatives with the momentum operators p, = —i0,, p, = —idy, and p, = —id, in H.

4. Confirm that H is Hermitian with respect to the scalar product

Wle) = [ dr () o(r) a7)
What boundary conditions must 1, ¢ satisfy?

Solution 3

1. Call v = dyu; then dyu = v and dyv = ?u. Thus

1 — P iiazlﬁl + 2

at’llll/Q =v+ 18§u = % - D)

and we find that



2. The analogous reality condition is

’L/J(%t) = omw*(x,t), Oy = (2 (1)> .

To show that the Schrodinger equations preserves it, we must show that if ¢ satisfies Eq. (10), that then

P(x,t) = 09" (z,1) also satisfies Eq. (10). To wit
ia’zaﬂ]} = i0,040,9" = —0,i0,04)"
=0y (io—zatw)* = Uzﬁ*w* = Uzﬁ*ffﬂz,

where we used thg fact th?}t 0,0, = —0,0, and 0,0, = I2x2. Now it’s just a matter of multiplying the matrices
to show that o, H*o, = H indeed holds.

3. After a little algebra, one readily finds that
i0pp =V X =7,
which can also be rewritten as
(10, — H) = j,

where

A

H= L'ﬁ: Lxﬁm +Lyﬁy +Lzﬁzv

0 0 O
L.=(0 0 —i],
0 i O
0 0 1
L,=10 0 0],
—-i 0 0
0 —i 0
L,=11 0 0
0 0 O

4. One immediately sees this from the fact that ﬁ;r = p; and LZT = L; are both Hermitian. In detail:
(wlfre) =3 [@rviLing
-y / @r () Lip+ Y / &rp; (4 Lio)
=> / &r (i) Lip + Y / dS - &;(—ih)e'Ligp
- — Jrooo
=3 [ @ o) o-in [

1, ¢ have to decay at spatial infinity for the boundary terms to vanish.

dS -y Lo = <ﬁ¢‘¢> + boundary terms

— 00



