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⋆ Problem 1 ⋆ 1
2
-spin of electrons

Consider the following three operators:

Ŝx =
ℏ
2

(
0 1
1 0

)
, Ŝy =

ℏ
2

(
0 −i
i 0

)
, Ŝz =

ℏ
2

(
1 0
0 −1

)
(1)

There operators are 1
2 -spin operators.

1. Show that the above spin operators satisfying following commutation relation

[Ŝi, Ŝj ] = iℏϵijkŜk (2)

where ϵijk is a Levi-Civita symbol:

ϵijk =


+1, if (i, j, k) = (x, y, z), (y, z, x) and (z, x, y)

−1, if (i, j, k) = (z, y, x), (x, z, y) and (y, x, z)

0 if i = j, or j = k, or i = k.

(3)

2. Show that eigenvalues of the spin operators are ℏ
2 and −ℏ

2 and find the corresponding eigenvectors of all three

spin operators. We will denote the eigenvectors of the spin operator Ŝi with eigenvalues ℏ
2 and −ℏ

2 as |i :↑⟩ and
|i :↓⟩ respectively. Finally show that the state |x :↑⟩ is superposition of |z :↑⟩ and |z :↓⟩ with equal probabilities.

3. Consider an operator defined as follows:
Ŝn̂ = S⃗ · n̂ (4)

where
⃗̂
S = Ŝxx̂ + Ŝy ŷ + Ŝz ẑ and n̂ = sin θ cosϕx̂ + sin θ sinϕŷ + cos θẑ. (x̂, ŷ and ẑ are not operators! They

are unit vectors.)

Show that eigenvalues of Sn̂ are same to the Ŝi (i.e. ±ℏ
2 ). If we denote the eigenvectors with ℏ

2 and −ℏ
2 as

|n̂ :↑⟩ and |n̂ :↓⟩, show that ⟨n̂ :↑ |S⃗|n̂ :↑⟩ = ℏ
2 n̂ and ⟨n̂ :↓ |S⃗|n̂ :↓⟩ = −ℏ

2 n̂.

4. Show that

eiθ
Ŝn̂
ℏ = 1̂ cos

θ

2
+ i

2

ℏ
Sn̂ sin

θ

2
(5)

where 1̂ is a 2× 2 identity matrix. (Hint: see Problem 1 in Exercise Sheet 2)
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5. Using the above results, show that
U(θ, ϕ)ŜzU

†(θ, ϕ) = Ŝn̂ (6)

where U(θ, ϕ) = e−iϕ
Ŝz
ℏ e−iθ

Ŝy
ℏ . Here U(θ, ϕ) is the rotation matrix with Euler angles θ and ϕ.

Solution 1

1. Set σi =
2
ℏ Ŝi then

σ2
x =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
= 1̂, (7)

σ2
y =

(
0 −i
i 0

)(
0 −i
i 0

)
=

(
1 0
0 1

)
= 1̂, (8)

σ2
z =

(
1 0
0 −1

)(
1 0
0 −1

)
=

(
1 0
0 1

)
= 1̂, (9)

σxσy =

(
0 1
1 0

)(
0 −i
i 0

)
=

(
i 0
0 −i

)
= iσz, (10)

σyσx =

(
0 −i
i 0

)(
0 1
1 0

)
=

(
−i 0
0 i

)
= −iσz, (11)

σyσz =

(
0 −i
i 0

)(
1 0
0 −1

)
=

(
0 i
i 0

)
= iσx, (12)

σzσy =

(
1 0
0 −1

)(
0 −i
i 0

)
=

(
0 −i
−i 0

)
= −iσx, (13)

σzσx =

(
1 0
0 −1

)(
0 1
1 0

)
=

(
0 1
−1 0

)
= iσy, (14)

σxσz =

(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
= −iσy, (15)

(16)

From the above relations, we can easily show that

[σi, σy] = 2iϵijkσk (17)

which results in [Ŝi, Ŝj ] = iℏϵijkŜk.

2. We will use σi. Let me start with σz. It is obvious that the eigenvalues of the σz are ±1. Corresponding
eigenvectors are given by

+1 :|z :↑⟩ =
(
1
0

)
, (18)

−1 :|z :↓⟩ =
(
0
1

)
(19)

Now let us consider σx. To find eigenvalues we need to solve det(σx − λ1̂) = 0

det(σx − λ) = det

(
−λ 1
1 −λ

)
= λ2 − 1 = 0 (20)

⇒ λ = ±1 (21)

So the eigenvalues are same to that of σz. The eigenvectors can be obtained as follows:

(σx − 1)|x :↑⟩ = 0 ⇒ |x :↑⟩ = 1√
2

(
1
1

)
(22)

(σx + 1)|x :↓⟩ = 0 ⇒ |x :↓⟩ = 1√
2

(
1
−1

)
(23)
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For σy, we follow the same procedure then we can find that eigenvalues are ±1 and eigenvectors are given by

|y :↑⟩ = 1√
2

(
1
i

)
(24)

|y :↓⟩ = 1√
2

(
1
−i

)
(25)

Now let us express |x :↑⟩ using eigenvectors of Ŝz

|x :↑⟩ = a↑|z :↑⟩+ a↓|z :↓⟩, (26)

⇒


a↑ = ⟨z :↑ |x :↑⟩ =

(
1 0

)
1√
2

(
1
1

)
= 1√

2
,

a↓ = ⟨z :↓ |x :↑⟩ =
(
0 1

)
1√
2

(
1
1

)
= 1√

2

. (27)

As a result, the probability of the |x :↑⟩ being observed with |z :↑⟩ and |z :↓⟩ is the same

|a↑|2 = |a↓|2 =
1

2
. (28)

3. A matrix representation of the operator Ŝn̂ is given by

2

ℏ
Ŝn̂ =

(
0 sin θ cosϕ

sin θ cosϕ 0

)
+

(
0 −i sin θ sinϕ

i sin θ sinϕ 0

)
+

(
cos θ 0
0 − cos θ

)
=

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
(29)

Following the same procedure in the problem 2, we can get following eigenvalues and eigenvectors:

det
(2
ℏ
Ŝn̂ − λ1̂

)
= (cos θ − λ)(− cos θ − λ)− sin2 θ = λ2 − 1 = 0 (30)

∴ λ = ±1 (31)

λ = 1 :

(
cos θ − 1 sin θe−iϕ

sin θeiϕ − cos θ − 1

)
|n̂ :↑⟩ = 0 ⇒ |n̂ :↑⟩ =

(
cos θ2

sin θ
2e
iϕ

)
(32)

λ = −1 :

(
cos θ + 1 sin θe−iϕ

sin θeiϕ − cos θ + 1

)
|n̂ :↓⟩ = 0 ⇒ |n̂ :↓⟩ =

(
sin θ

2

− cos θ2e
iϕ

)
(33)

Using the above results, let us calculate the ⟨n̂ :↑ | ⃗̂S|n̂ :↑⟩ first.

2

ℏ
⟨n̂ :↑ |Ŝx|n̂ :↑⟩ =

(
cos θ2 sin θ

2e
−iϕ)(0 1

1 0

)(
cos θ2

sin θ
2e
iϕ

)
=
(
sin θ

2e
−iϕ cos θ2

)( cos θ2
sin θ

2e
iϕ

)
= 2 sin

θ

2
cos

θ

2
cosϕ = sin θ cosϕ, (34)

2

ℏ
⟨n̂ :↑ |Ŝy|n̂ :↑⟩ =

(
cos θ2 sin θ

2e
−iϕ)(0 −i

i 0

)(
cos θ2

sin θ
2e
iϕ

)
=
(
i sin θ

2e
−iϕ −i cos θ2

)( cos θ2
sin θ

2e
iϕ

)
= 2 sin

θ

2
cos

θ

2
sinϕ = sin θ sinϕ, (35)

2

ℏ
⟨n̂ :↑ |Ŝz|n̂ :↑⟩ =

(
cos θ2 sin θ

2e
−iϕ)(1 0

0 −1

)(
cos θ2

sin θ
2e
iϕ

)
=
(
cos θ2 − sin θ

2e
−iϕ)( cos θ2

sin θ
2e
iϕ

)
= cos2

θ

2
− sin2

θ

2
= cos θ (36)
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As a result, ⟨n̂ :↑ | ⃗̂S|n̂ :↑⟩ = ℏ
2 n̂.

For ⟨n̂ :↓ ⃗̂S|n̂ :↓⟩ following the same procedure, we can get

2

ℏ
⟨n̂ :↓ |Ŝx|n̂ :↓⟩ =

(
sin θ

2 − cos θ2e
−iϕ)(0 1

1 0

)(
sin θ

2

− cos θ2e
iϕ

)
=
(
− cos θ2e

−iϕ sin θ
2

)( sin θ
2

− cos θ2e
iϕ

)
= −2 sin

θ

2
cos

θ

2
cosϕ = − sin θ cosϕ, (37)

2

ℏ
⟨n̂ :↓ |Ŝy|n̂ :↓⟩ =

(
sin θ

2 − cos θ2e
−iϕ)(0 −i

i 0

)(
sin θ

2

− cos θ2e
iϕ

)
=
(
−i cos θ2e

−iϕ −i sin θ
2

)( sin θ
2

− cos θ2e
iϕ

)
= −2 sin

θ

2
cos

θ

2
sinϕ = − sin θ sinϕ, (38)

2

ℏ
⟨n̂ :↓ |Ŝz|n̂ :↓⟩ =

(
sin θ

2 − cos θ2e
−iϕ)(1 0

0 −1

)(
sin θ

2

− cos θ2e
iϕ

)
=
(
sin θ

2 cos θ2e
−iϕ)( sin θ

2

− cos θ2e
iϕ

)
= − cos2

θ

2
+ sin2

θ

2
= − cos θ (39)

Therefore ⟨n̂ :↓ | ⃗̂S|n̂ :↓⟩ = −ℏ
2 n̂.

4. Using Taylor expansion

eiθ
Ŝn̂
ℏ =

∞∑
k=0

1

k!
ik
(
θ

2

)k (
2

ℏ
Ŝn̂

)k
(40)

Using Eq. (29),

k = 1 : 2
ℏ Ŝn =

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
k = 2 :

(
2
ℏ Ŝn

)2
=

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
=

(
1 0
0 1

)
= 1̂

⇒


(

ℏ
2 Ŝn̂

)k
= ℏ

2 Ŝn̂, when k is even(k > 0)(
ℏ
2 Ŝn̂

)k
= 1̂, when k is odd(k > 0)

. (41)

Using the above results,

eiθ
Ŝn̂
ℏ = 1̂ +

∑
k=odd(>0)

1

k!
ik
(
θ

2

)k
2

ℏ
Ŝn̂ +

∑
k=even(>0)

1

k!
ik
(
θ

2

)k
1̂

= 1̂ +

∞∑
n=1

1

(2n− 1)!
i2n−1

(
θ

2

)2n−1
2

ℏ
Ŝn̂ +

∞∑
n=1

1

(2n)!
i2n
(
θ

2

)2n

1̂

= 1̂ +
∞∑
n=1

(−1)n+1

(2n− 1)!

(
θ

2

)2n−1

i
2

ℏ
Ŝn̂ +

∞∑
n=1

(−1)n

(2n)!

(
θ

2

)2n

1̂

=

∞∑
n=0

(−1)n

(2n)!

(
θ

2

)2n

1̂ +

∞∑
n=1

(−1)n+1

(2n− 1)!

(
θ

2

)2n−1

i
2

ℏ
Ŝn̂

= cos
θ

2
1̂ + sin

θ

2
i
2

ℏ
Ŝn̂. (42)

Alternatively, one can exploit the fact that we have previously diagonalized Ŝn̂ to find its exponential, as
explained in the solutions to Exercise Sheet 2.
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5. First let us find a matrix representation of U(θ, ϕ).

U(θ, ϕ) = e−iϕ
Ŝz
ℏ e−iθ

Ŝy
ℏ =

(
cos

ϕ

2
1̂− i sin

ϕ

2

2

ℏ
Ŝz

)(
cos

θ

2
1̂− i sin

θ

2

2

ℏ
Ŝy

)
=

(
e−i

ϕ
2 0

0 ei
ϕ
2

)(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
=

(
e−i

ϕ
2 cos θ2 −e−i

ϕ
2 sin θ

2

ei
ϕ
2 sin θ

2 ei
ϕ
2 cos θ2

)
(43)

U(θ, ϕ)ŜzU
†(θ, ϕ) =

(
e−i

ϕ
2 cos θ2 −e−i

ϕ
2 sin θ

2

ei
ϕ
2 sin θ

2 ei
ϕ
2 cos θ2

)(
1 0
0 −1

)(
ei

ϕ
2 cos θ2 e−i

ϕ
2 sin θ

2

−ei
ϕ
2 sin θ

2 e−i
ϕ
2 cos θ2

)

=

(
e−i

ϕ
2 cos θ2 −e−i

ϕ
2 sin θ

2

ei
ϕ
2 sin θ

2 ei
ϕ
2 cos θ2

)(
ei

ϕ
2 cos θ2 e−i

ϕ
2 sin θ

2

ei
ϕ
2 sin θ

2 −e−i
ϕ
2 cos θ2

)

=

(
cos2 θ2 − sin2 θ2 2e−iϕ cos θ2 sin

θ
2

2eiϕ cos θ2 sin
θ
2 − cos2 θ2 + sin2 θ2

)
=

(
cos θ e−iϕ sin θ

e−iϕ sin θ − cos θ

)
= Ŝn̂ (44)

⋆ Problem 2 ⋆ Projectors and spectral decomposition

Let Â be a Hermitian operator with a discrete, non-degenerate spectrum (every eigenvalue has only one eigenvector)

Â|n⟩ = an|n⟩, n ∈ N (45)

where an is the eigenvalue of the (normalized) eigenstate |n⟩. We define

P̂n = |n⟩⟨n| (46)

as a projector on the eigenspace spanned by the eigenvector |n⟩.

1. Show that for any state |ψ⟩ a following equation holds

ÂP̂n|ψ⟩ = anP̂n|ψ⟩ (47)

2. Show that this is true
P̂nP̂m = δnmP̂n (48)

3. Express Â using the operators P̂n. To do this, use the completeness of the |n⟩ states (i.e.
∑
n |n⟩⟨n| = 1̂)

4. The probability for a state |ψ⟩ to be measured with eigenvalue n is given by

P|ψ⟩(n) = |⟨n|ψ⟩|2 (49)

Express P|ψ⟩(n) using P̂n and |ψ⟩.

Now let B̂ be a Hermitian operator with a purely continuous spectrum (such as the momentum operator p̂):

B̂|b⟩ = b|b⟩, b ∈ R (50)

These eigenstates satisfy following properties:

⟨b|b′⟩ = δ(b− b′),

∫
db|b⟩⟨b| = 1̂ (51)

In analogy to Eq. (46), we now define the projector for the eigenvalues between α and β (α < β)

P̂[α,β] =

∫ β

α

db|b⟩⟨b|. (52)
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5. Show that P̂[α,β]P̂[γ,δ] = P̂[α,β]∩[γ,δ].

6. Express the probability of measuring a value within the interval [α, β] when measuring the observable B̂ from
the state |ψ⟩ using the projector P̂[α,β].

7. Now let B̂ = p̂ be the momentum operator. Let the wave function in momentum representation be

ψ(p) = ⟨p|ψ⟩ =

{
1√
2p0

, for|p| < p0

0 otherwise
(53)

Using the above projectors, calculate the probability of measuring a particle with momentum p > 0 given a
measurement of |ψ⟩.

Solution 2

1. We expand the state |ψ⟩ into the eigenstates of the Hermitian operator Â (since its eigenstates are complete∑
n |n⟩⟨n| = 1̂ and orthonormal ⟨n|m⟩ = δnm)

|ψ⟩ =
∑
n

|n⟩⟨n|ψ⟩ =
∑
n

ψn|n⟩ (⟨n|ψ⟩ ≡ ψn) (54)

Then
P̂n|ψ⟩ = |n⟩⟨n|

∑
m

ψm|m⟩ = |n⟩
∑
m

ψmδmn = ψn|n⟩ (55)

Obviously, P̂n is really the projector to the |n⟩ state and it holds

ÂP̂n|ψ⟩ = ψnÂ|n⟩ = ψnan|n⟩ = anψn|n⟩ = anP̂n|ψ⟩ (56)

2. Taking advantage of the orthogonality of the eigenstates of Â, it is easy to show that

P̂nP̂m = |n⟩⟨n|m⟩⟨m| = δnm|n⟩⟨n| = δnmP̂n (57)

3. We can express Â using the projector as follows:

Â = 1̂Â1̂ =
∑
n,m

|n⟩⟨n|Â|m⟩⟨m| =
∑
n,m

am|n⟩⟨n|m⟩⟨m| =
∑
n

an|n⟩⟨n| =
∑
n

anP̂n (58)

4. We can express the probability for the state |ψ⟩ to be measured with the eigenvalue an as follows:

P|ψ⟩(n) = |⟨n|ψ⟩|2 = ⟨ψ|n⟩⟨n|ψ⟩ = ⟨ψ|P̂n|ψ⟩ = ⟨P̂n⟩ (59)

5. We consider

P̂[α,β]P̂[γ,δ] =

∫ β

α

db

∫ δ

γ

db′|b⟩⟨b|b′⟩⟨b′| (60)

and now divide the first integral ∫ β

α

db =

∫ β

α

∣∣∣∣∣
b∈[γ,δ]

db+

∫ β

α

∣∣∣∣∣
b̸=[γ,δ]

db (61)

so that

P̂[α,β]P̂[γ,δ] =

∫ β

α

∣∣∣∣∣
b∈[γ,δ]

db

∫ δ

γ

db′δ(b− b′)|b⟩⟨b′|+
∫ β

α

∣∣∣∣∣
b ̸=[γ,δ]

db

∫ δ

γ

db′δ(b− b′)|b⟩⟨b′|

=

∫ β

α

∣∣∣∣∣
b∈[γ,δ]

db|b⟩⟨b| =
∫
[α,β]∩[γ,δ]

db|b⟩⟨b| = P̂[α,β]∩[γ,δ] (62)
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6. We first express |ψ⟩ in terms of the |b⟩ eigenstates

|ψ⟩ = 1̂|ψ⟩ =
∫
db|b⟩⟨b|ψ⟩ =

∫
dbψ(b)|b⟩ (63)

The probability for |ψ⟩ to be in state |b⟩ is then given by |ψ(b)|2db. This means that the probability of b being
in [α, β] is given by

W ([α, β]) =

∫ β

α

|ψ(b)|2db =
∫ β

α

db⟨b|ψ⟩∗⟨b|ψ⟩ = ⟨ψ|[
∫ β

α

db|b⟩⟨b|]|ψ⟩

= ⟨ψ|P̂[α,β]|ψ⟩ = ⟨P̂[α,β]⟩ (64)

7. With Eq. (64), probability that the state measured with p > 0 is given by

W ([0,∞]) =

∫ ∞

0

|ψ(p)|2dp =
∫ p0

0

1

2p0
dp =

1

2
. (65)

Problem 3 Free particle in a homogeneous field

A homogeneous field acting on a particle is determined by the potential

V (x) = −Fx (66)

The Schrödinger equation for this system has the form of the Airy differential equation in spatial space

f
′′
(x)− xf(x) = 0 (67)

However, the solution to this problem is easier to find in momentum space.

1. Give the momentum space representation for the Schrödinger equation of a particle in a homogeneous field.

2. Determine the wave function ψ(p) that solves the Schrödinger equation,

3. Show that this solution, when transformed back into real space, becomes the implicit equation for the Airy
function

Ai(ξ) =

∫
du

π
cos
(u3
3

+ ξ
)
. (68)

Solution 3

1. In momentum space, the Schrödinger equation is given by the first-order differential equation

p2

2m
ψ(p)− iℏF

dψ(p)

dp
= Eψ(p) (69)

2. This differential equation can be solved by separating the variables

−i 1
ψ
dψ =

1

ℏF

(
E − p2

2m

)
dp (70)

and integration on both sides leads to

−i log
(
ψ(p)

ψ0

)
=

1

ℏF

(
Ep− p3

6m

)
(71)

This gives the wave function in momentum space

ψ(p) ∝ exp

(
i
E

ℏF
p− i

p3

6mℏF

)
(72)
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3. Using Fourier transformation

ψ(x) =

∫
dp√
2πℏ

ei
px
ℏ ψ(p) ∝

∫
dp exp

(
i
[p
ℏ

(
x+

E

F

)
− p3

6mℏF

])
(73)

In the above equation, the energy E is related to the shift in x by x0 = −EF . This is precisely the classic

reversal point where E = V (x0). Defining a length scale l: l3 = ℏ2

2m|F | then

ψ(x) ∝
∫

dp√
2πℏ

exp
(
i
[pl
ℏ
x− x0
l

− sgn(F )
p3l3

3ℏ3
])

(74)

Let’s introduce the dimensionless variables:

ξ = (x− x0)/l, u =
pl

ℏ
. (75)

Since sin(x) is a odd function in x, we will get

ψ(ξ) ∝
∫
du cos

(u3
3

− sgn(F )ξu
)

(76)

This is just the implicit equation for the Airy function given by

ψ(ξ) ∝ Ai(− sgn(F )ξ) (77)
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