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The problems whose solutions you need to upload are designated with stars.

* Problem 1 * 3-spin of electrons

Consider the following three operators:

N h{o 1 A h(0 —i A h
SrZ(l 0)7Sy2<i O)’SZQ

There operators are %—Spin operators.

1. Show that the above spin operators satisfying following commutation relation
[Sl, Sj] == Zheljkék (2)
where ¢;;;, is a Levi-Civita symbol:

+1, if (i,5,k) = (x,y,2), (y,2,2) and (z,2,y)
0 ifi=j,orj=k, ori=%.

2. Show that eigenvalues of the spin operators are % and —% and find the corresponding eigenvectors of all three

spin operators. We will denote the eigenvectors of the spin operator S; with eigenvalues % and —% as i :1) and
i :]) respectively. Finally show that the state | :1) is superposition of |z :1) and |z :]) with equal probabilities.

3. Consider an operator defined as follows: R .

Sp =8 (4)
where S = S,4 + S’yg) + 5.2 and A = sinf cos @& + sinfsin ¢y + cos02. (&, ¥ and Z are not operators! They
are unit vectors.)

Show that eigenvalues of S, are same to the S (i.e. :I:%) If we denote the eigenvectors with % and —% as
|7 1) and |7 :)), show that (7 :1 |S|A ) = Laand (A [S|h:)) = — B¢,

4. Show that ) 0 9 0
wp _ 5 U e Y
e’ =1cos 5 +thn sin o (5)

where 1 is a 2 x 2 identity matrix. (Hint: see Problem 1 in Exercise Sheet 2)



5. Using the above results, show that R R
U(®,9)5:U"(0,¢) = Sa (6)

where U(6, ¢) = e~ i ¢~ Here U(6, ¢) is the rotation matrix with Euler angles 6 and ¢.

Solution 1

1. Set o; = %5‘1 then
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From the above relations, we can easily show that
[0i,0y] = 2i€;j,0% (17)
which results in [Sl, SJ] = iheijkgk.

2. We will use ;. Let me start with o,. It is obvious that the eigenvalues of the o, are +1. Corresponding
eigenvectors are given by

1
+1:z:1) = (0> , (18)
0
—1:z:) = (1> (19)
Now let us consider o,. To find eigenvalues we need to solve det(o, — A1) = 0
-2 1 2
det(o, — A) = det Y =X-1=0 (20)
=\ ==l (21)
So the eigenvalues are same to that of o,. The eigenvectors can be obtained as follows:
1 /1
(0~ Dl st) =0 Ja 1) = =5 (1) 22
o+ Doty =0 o) = = (1)) (29)
o ) = )= —=
V2 \—1



For o, we follow the same procedure then we can find that eigenvalues are £1 and eigenvectors are given by

v = ;) (24)
= () (25)

Now let us express |z :1) using eigenvectors of S
|z 1) = arlz 1) + ayfz <)), (26)

et 05 () -

1) A (27)

=
ap=(z:l]z:1)=(0 1)\}5(1 =7

As a result, the probability of the |z :1) being observed with |z :1) and |z :]) is the same

jar]? =, * = 5. (28)
2
. A matrix representation of the operator Sy is given by
ES' - 0 sin 6 cos ¢ n 0 —isin @ sin ¢ n cos 0
A" \sinfcos¢ 0 1sin fsin ¢ 0 0 —cosf
cosf)  sinfe”
n (sin fe’®  —cosf ) (29)
Following the same procedure in the problem 2, we can get following eigenvalues and eigenvectors:
2 A N
det (ESn - )\1) = (cosf — A)(—cosf —\) —sin?0 =\? —1=0 (30)
SoA==1 (31)
cosf —1 sinfe ¥\ . . [ cost
A=1: (sin@e”’ —cosf — 1) 1) =0= A1) = (sin gei‘i’ (32)
, [cos@+1 sinfe N\ L sin ¢
A=—1: (sin@ew  cosf + 1) [y =0=|n:l)= <_ cos ge“f’ (33)
Using the above results, let us calculate the (7 :1|S|i :1) first.
2, & 1a 0 . 6 —isn (0 1 cos ¢ e 0 cos ¢
ﬁ<n A |Sz|f ) = (cos §  sin §ei?) (1 O) (sin g;id)) = (sin e cos?) sin g:w
0 0
= 2sin 5 €08 5 cos ¢ = sinf cos ¢, (34)
g(ﬁ 1Syl 1) = (cos & sin Le=?) 0 =i o % = (isinge™ —icos?) o %
A 2 2 i 0 ) \singe 2 2/ \sin ge™
0 0
= 2sin 70085 sin ¢ = sin #sin ¢, (35)
2 8 s 0 . 0.—ipn (1 O cosg \ 0 o s [ cos§
ﬁ<n 4827 1) = (cos §  sin Ge™) (0 _1> (sin oii0 ) = (cos§ —sinfe ™) sin 8ot
0 0
= cos? 5~ sin? 5 = cos 0 (36)



As a result, (n:1 |§|ﬁ 1) = 2q.

For (f :] S |7t :)) following the same procedure, we can get

g ~ & oa . _ ] 0 ,—id O 1 SinQ _ 9 —id .0 SinQ
h< b [Splh ) = (sind  —cosZe=?) (1 0) (_ cos gei‘b = (—cosge sin 2) o8 gzei¢
0 0
= —2sin 30085 cos ¢ = —sin 6 cos ¢, (37)
2 &N (a0 o —igy (0 —i sin ¢ 0 —id . g sin ¢
ﬁ<n LSyl :l) = (sin§  —cos§e™?) <z O> <_ cos geid’ = (—icosge —isin §) eos gem
6 0
= —2sin 30085 sin¢ = — sin #sin ¢, (38)
2 A A N (e B o iy (1 0 sin ¢ g 0 ¢ sin &
h(n L [S:A ) = (sin§  —cos §e?) (O 1) (_ cos gei‘b = (sin§ cosfe'?) ~ cos it
2t | .20
= —cos §+sm 5:7(3050 (39)
Therefore (7 3| [S|f 1)) = — LA,
4. Using Taylor expansion
0 =1, 0\ r2.\"
k=0
Using Eq. (29),
_ 26 _ [ cost sin fe ¢
F=1: 55 = (gngeid  —cosd
2 . i e—it . -
_ 2& \° _ [ cosf  sinfe cos)  sinfe (1 0} -
k=2 (ES”) B (sin@eiq5 —cos 6 ) (sin@ei‘z’ —eost ) = \o 1) 71
A\ k A
(%Sn> =15, when k is even(k > 0)
= e . (41)
(g ﬁ) =1,  when k is odd(k > 0)
Using the above results,
. k k
0% - 1 .,/0\" 24 1 /(0N -
e’ =14 Z —1 () =Sa + Z —i" 5] 1
| |
k=o0dd(>0) ! 2 h k=even(>0) 2
—i+i L e (0 2nilgéﬁ+§: L o (0 Qni
=21 2 Rt A (2n)! 2
) e’} (_1)n+1 0 2n—1 2 . [e%s} (_1)11 0 2n R
=1 z Z8a ) 1
+n§::1 (2n— 1)1 \ 2 i +n§::1 2n)! \2
[e'S) (_1)71 0 2n ) 00 (_1)n+1 0 2n—1 2.
= - 1 = —Sh
T;O @n) \2 +n§ 2n— 1) \2 ‘n
6. 2 4
= cos 51 + sin ilﬁSn (42)

Alternatively, one can exploit the fact that we have previously diagonalized S;, to find its exponential, as

explained in the solutions to Exercise Sheet 2.



5. First let us find a matrix representation of U (6, ¢).

, . 2. 0. 02 4
U, o) = e"¢ _’9 T = (cos %1 —isin gﬁSz) (cos 51 —1sin iﬁSy)
et 0\ [cos? —sinl e % cosd —e % sind
= i in 2 [ P28 i 0 (43)
0 elz S 5 COs 5 e'zsing €2 CoS 5

_ o . ¢ _
U lz COS* e "2 smg 1 0 e’z cosg et sm%
(a¢) 0 i@ 9 0 -1 i e _i2 )
€2SIH €' cos 3 €'z sin €7 cos 3
_ il . (¢ il .
Z2 cosf e "2 smg e’z cosg e "2 sm%
(o o . ®
¢ 2smf e'z COS% e'z smg —e 2 cosg
_ (cos? *—Sl 2% 2e_i‘i’cosgsmg _ cos 0 e~ sin6
2e “bcosgsmz —0082‘9 + sin 2% e ®ginf  —cosf
=55 (44)

* Problem 2 x Projectors and spectral decomposition

Let A be a Hermitian operator with a discrete, non-degenerate spectrum (every eigenvalue has only one eigenvector)
Aln) = anln), neN (45)
where a,, is the eigenvalue of the (normalized) eigenstate |n). We define
P, = [n)(n] (46)
as a projector on the eigenspace spanned by the eigenvector |n).
1. Show that for any state |¢) a following equation holds
AP, |9) = anPuly) (47)

2. Show that this is true o .
PP = 6,mPn (48)

3. Express A using the operators P,. To do this, use the completeness of the |n) states (i.e. 3 |n)(n| = 1)

4. The probability for a state |[¢)) to be measured with eigenvalue n is given by
Pyy(n) = [{n|y)? (49)
Express Py (n) using P, and |1).
Now let B be a Hermitian operator with a purely continuous spectrum (such as the momentum operator p):
Blb) = blb), be R (50)

These eigenstates satisfy following properties:

I’y = (b — ), /db|b><b| ~1 (51)

In analogy to Eq. (46), we now define the projector for the eigenvalues between o and 8 (a < f5)

) 8
Pla,g) = /a db|b) (b|- (52)



5. Show that P[aﬁ]p[%(;] = p[a,ﬁ]ﬁ['y,é]'

6. Express the probability of measuring a value within the interval [cr, 8] when measuring the observable B from
the state |¢)) using the projector P, g).

7. Now let B = p be the momentum operator. Let the wave function in momentum representation be
A forlp| < po
¥(p) = (ply) = § VP . (53)
0 otherwise

Using the above projectors, calculate the probability of measuring a particle with momentum p > 0 given a
measurement of |1).

Solution 2

1. We expand the state |1} into the eigenstates of the Hermitian operator A (since its eigenstates are complete
>, In)(n| =1 and orthonormal (n|m) = 6,m)

Yy = In)(nly) = an\n (n[¢)) = ¢n) (54)

Then
P, ) = [n)(n] Z Ym|m) = |n) Z VYmOmn = Pn|n) (55)

m

Obviously, P, is really the projector to the |n) state and it holds
AP, y) = pnAln) = Pnanin) = anpnln) = an Pult) (56)

2. Taking advantage of the orthogonality of the eigenstates of A, it is easy to show that

Pan = [n)(n|m)(m| = nmIn)(n| = 5nmpn (57)

3. We can express A using the projector as follows:

A:ifﬁ:Z\n Y(n|Alm)(m| = Zam|n Y(nlm)(m| = Zanm Y(n| = Zan n (58)

n,m

4. We can express the probability for the state |¢)) to be measured with the eigenvalue a,, as follows:

Piyy(n) = |(n[)[* = (ln)(nle) = ([ Palth) = (Py) (59)
5. We consider
. B g
PapiPo = [ b [ @iy ol) v (60

and now divide the first integral

db (61)
b#[v,0]

B
we |

be[,9]

B B
foo=]

so that

B 5
db / dv'5(b — ) [B) (1|
Y

db/édb’é(b—b’)|b><b’|+/ﬁ

Pla,p1Py,0) = /

[e3

:/j

be[v,9] b#[7,6]

db|b) (b| = / db|b) (b] = Pra giify (62)
be 0] [@,8]N[7,4]



6. We first express |¢) in terms of the |b) eigenstates

) = 1l = / b} bl = / b (5)b) (63)

The probability for |1) to be in state |b) is then given by |)(b)|?db. This means that the probability of b being
in [a, (] is given by

B B B
W ([a, B]) = / o(b)|2db = / db{blapy* (o) = (] / b} B[] 1¥)

= (¥1Pap1l¥) = (Pap) (64)
7. With Eq. (64), probability that the state measured with p > 0 is given by
e 9 Po 1 1
Wilo.oc) = [P = [ 5 dp— . (65)
0 0 Po
Problem 3 Free particle in a homogeneous field
A homogeneous field acting on a particle is determined by the potential
V(z)=—-Fx (66)

The Schrodinger equation for this system has the form of the Airy differential equation in spatial space
(@) —af(x) =0 (67)
However, the solution to this problem is easier to find in momentum space.
1. Give the momentum space representation for the Schrodinger equation of a particle in a homogeneous field.
2. Determine the wave function v (p) that solves the Schrodinger equation,

3. Show that this solution, when transformed back into real space, becomes the implicit equation for the Airy

function ,

d
A4(6) :/?ucos (% +g). (68)
Solution 3

1. In momentum space, the Schrodinger equation is given by the first-order differential equation

Zsto) — i — Eugy (69)

2. This differential equation can be solved by separating the variables

1 1 p?
i = — (E - —)d
= RE\E gy (70)
and integration on both sides leads to
() 1 P’
—il =— (Ep— — 71
o8 ( do ) hE\"T T 6m ()
This gives the wave function in momentum space
E P
¥(p) o exp (Zth - ZGmhF) (72)



3. Using Fourier transformation

. dp Pz [P E p3 :|
P(z) = \/ﬁe n)(p) o /dpexp (z[h(x—k F) ~ GmiE (73)
In the above equation, the energy FE is related to the shift in x by xg = —FF. This is precisely the classic
reversal point where E = V(z0). Defining a length scale I: [3 = %IQF\ then

P(x) / \/L% exp (z [‘%l L _l T sgn(F)}%D (74)

Let’s introduce the dimensionless variables:

&= (z—m0)/l, u:p—hl. (75)
Since sin(z) is a odd function in z, we will get
3
P(€) x /du cos (% - sgn(F)fu) (76)

This is just the implicit equation for the Airy function given by

(&) o< Ai(—sgn(F)E) (77)



