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* Problem 1 x Hermite’s polynomials

The Hamiltonian of the simple harmonic oscillator (SHO) in the z-basis and its energy eigenvalues are given by

(- %aﬁ + m?‘*ﬂﬁ)wn(x) = Enn(2), En = heo(n+ %)

The eigenfunctions ¢, (z) are closely related to Hermite’s polynomials
Hy(2) = (-1)"e 0%, n>0

1. First, show that the function et F25t g g generating function of Hermite polynomials, i.e.
2 >t
—t2422t
o ti 22t _ Z — H,(z)
n=0
(Hint: use the Taylor expansion of e~(=9%)
2. Using the above result, derive the following recursion relations for H,:

0,H,(2) =2nH,_1(z), n>1

and
Hp1(2) =22zHp(2) — 2nH,—1(2), n>1

Derive the following differential equation using Eqs. (4) and (5)
[02 — 220, + 2n]H,(2) =0
(Hint: Egs. (4) and (5) can be proven by differentiating Eq. (3) with respect to z or with respect to t)

3. Show the orthogonality of the Hermite polynomials,

/ dze*ZQHn(z)Hm(z) =0, forn#m

— 00

(Hint: manipulate Eq. (6) and integrate it over z)

(1)



Solution 1

t2 422t

1. First we show that the function e~ is the generating function of the Hermitian polynomials, i.e.

Fz,t) = e 127 = Z H (8)
To do this, we use the hint suggested on the exercise sheet
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2. Again we use the hint to derive the recursion relations for
oo tn st tn+1
0, F =2tF = 0.Hy,(z) = 0. Hy,
EVAEED S
n=1 n=0
oo tn+1 o0 tn—i—l
SAF =2% ——Hy(z) = 0.ty
Here we took advantage of the fact that 0,Hy = 0. A coefficient comparison provides the first recursion
equation
0,H,(z) =2nH,_1(z) (9)
Differentiating F' with respect to t gives
o e 2t 224" o nt" !
n=0 n=0
i 221" (n+ 1)t"
—H,_ —H,(2) — ~—F—H, =0
7;) (= 1) 1(2) + ol (2) n+ 1) +1(2)

Here H_; and H_5 are not defined. We therefore set this to zero as a matter of form. A coefficient comparison

immediately gives
Hp1(2) =22zH,(2) — 2nHp—1(2) (10)

With the help of the two recursion equations, the differential equation for the Hermite polynomials can be
derived

0*H, = 2n0,H, 1 = 4n(n — 1)H,,_,,
—220,H, = —4nzH,_,

With Eq. (10) we then get
dn(n —1)H,_o —4nzH, 1 + 2nH, = [0? — 220, + 2n]H,(2) =0 (11)

3. If we multiply e~ H,, to the left of the Eq. (11) and integrate over z, it gives

/ dze*Z2Hm(5f —220,)H, = an/ dze*Z2Hm(z)Hn(z) (12)
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The partial integration of the left side gives

/ dzefzsz((?? —220,)H, = efzszaZHn

oo

— /OO dz(@zefﬁHm)aan

oo —o0

+ / dze*Z2Hm(f2zaz)Hn

— 00

_ _/OO dze™* (0, H,,)(0.H,)

Then,

_ / dze== (8. H,) (0. H,) = —2n / dze== H,p, (=) (2) (13)
If we swap m and n, we have

- / dze " (0, H,) (0. Hp) = —2m / dze™ Hyp(2)Hp(2) (14)

If we subtract both equations, we get:

(2n — 2m) / dze== Hop (2) Hy(2) = 0 (15)
This means that for m # n
/ dze ™ Hp(2)Hp(2) =0 (16)

* Problem 2 x Two-dimensional harmonic oscillator
We consider the two-dimensional harmonic oscillator with the Hamilton operator

Jffzﬁ%Jrﬁ%erw2
2m 2

where Z; and p; satisfy the commutation relations: [#;, &;] = [p;,p;] = 0 and [Z;, p;] = ihd;; where 7, j=1,2.

(&1 + 23) (17)

1. Based on Heisenberg’s uncertainty relation, derive a lower bound of the ground state energy.

2. From the position and momentum operators Z;, p;, we define creation and annihilation operators dg and a; as

follows:
a; = ax; +1ipp;, (18)
al = ai; —iBp; (19)
where o and 8 are real numbers.
Determine o and 3 so that:
[@s, d]] = 0,5, (20)
[dlv& ] = [djad;] = (21)
2 1
Hthw(Nj+§> (22)
j=1

where N; = d}di.



3. Prove the following identities:

4. Because [Nl, Ng} = 0 we can find common eigenstates for N; and N

N1|n1,n2> = ni|ni, na),

N2|n1,n2> = nz\”h”z)

Calculate the effect of aq, as, &J{, d; on the state |ny,ns) . To do this, calculate the eigenvalues of N; and Ny

from the respective states aq|ni,na) , ao|ni, na), &J{|n1,n2> , d£|n1,n2>.

5. Now what are the eigenstates and eigenenergies of the two-dimensional harmonic oscillator? Why does nq,n9 €
No have to apply? (Hint: you can use the result of part 1 of this assignment that the energy eigenvalues are

bounded from below)

Solution 2

1. Since the harmonic oscillator potential is symmetric about 0, the ground state should also be symmetric (or

anti-symmetric) and therefore (Z;) = (p;) = 0. This means that for i = 1,2
(@F) = (2:)* = (27), Ap} = (5F) — (b:)* = (B})

Using Heisenberg’s uncertainty relation,

2
Ax;

s B2 K2
piag o WPl R
Tisbi = Ty 4

Combining Egs. (28) and (29) gives
2

A7)

The energy is given by the expectation value of the Hamilton operator

;) >

g =iy = P M gy e

2m
> o[+ 7]+ (e + @)

Then

[a;,a;] = [a; 4 ifpi, oty + ifp;] = iaf([Zi, ps] + [Py, &i]) =0
lal,al] = (la;,a:)" =0
[&i, EL;} = [Ozjh + Zﬂf)z, OLSEJ' — ’Lﬂﬁj] = 721'04&[-%1';13]'} = 2710[[‘35”4 = 5@‘

(31)



As a result, af = 2—15

Z; and p; in terms of a; and d;r are given by

ot
L G ta;
BT T (37)
h
Plug this into the Hamiltonian:
2
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By comparison, we see that the following must apply

mw? ko mw
82 2m TV 2 (39)

Thus « has the dimensions of inverse length, and g of inverse momentum. Up to a factor, this could have also
been derived by dimensional analysis.

. We calculate

[Ny, ;] = [&Idivdj] = &j[divdj] + [&Ivd]’]di = —0;;0;, (40)
[Ni,al] = (=[Ni,a5))" = d;al, (41)
[Ni, Nj] = [N, alag) = [Ni,alla; + al[N;, a;] = 655(Nj — Nj) =0 (42)

. From the above commuation relations (Eqgs. (40) and (41)), we can guess the effect of d; on the state |ni,ng)
as follows:

a1|n1,ne) = c1|lng — 1, ng), (43)
as|ni,ng) = calni,ng — 1) (44)

The annihilation operators a;, ao reduce their respective quantum numbers by 1. We now want to determine
c1 and co. We can do this via

(nl,n2|&‘;d1|n1,n2> = le1]*(n1 — 1,m2|n1 — 1,n2), (45)
= <n17n2|N1|n1,n2> = |c1|2 =n (46)
L0 =/ (47)

Similarly, we can obtain co = y/n3. Therefore

N

a1|ny1,na) = /nijny — 1, ng) (48)
as|ni,n2) = \/nalni, ng — 1) (49)

In the same way we find
al|ny,n2) = Vni + 1lny + 1,n2) (50)
d$|n1, n2> =Vvns + 1|n1,n2 + 1> (51)



5. The common eigenstates |ni, ns) of Nl and NQ are also the eigenstates of H

2 2

Hiny,no) = [Ny +1/2]|n1,n2) = > hwlng + 1/2]|n1, na) = Eny ny 01, no) (52)
i=1 i=1
where
2
Epymg = Y hwlni +1/2] = hwlny + ng +1]. (53)
=1

We had shown that the intrinsic energies are bounded from below: E > hw. As a result, ny and ns obey a
lower bound: n; > 0 and ne > 0. Additionally, we can also show that n; and no must be integer numbers
larger than —1 by applying the annihilation operators to the state several times:

av tng, ng) = npaitng — 1,n2) = --- = v/n1la1|0,ng) = 0. (54)
If n; were not integer, then there would be states with negative n; which implies negative energy. This would
contradict the results of part 1.
Problem 3 Cauchy-Schwarz inequality

1. Derive the Cauchy-Schwarz inequality
v[?la]* > |v - uf? (55)

by using the fact that
(v — )\u)2 >0 (56)
and minimizing (v — Au)? with respect to . Here v and u are real-valued vectors and A is a real number.

2. Can we extend the above result to the complex-valued vector case?

(v v)l(u™ - u)| > [v* ol (57)
Solution 3
1. Set f(\) = (v — Au)Z
% =2\u* —2\u-v (58)

Therefore the value of A minimizing f(\) is TER

u-v u-v \2 lu-vl|?
f) > f(A= luf? )= (V - [uf? u) = |V|2 - uf? >20= |V|2|u|2 > |v- U—l2 (59)

2. For complex valued case, we can consider A as two parameters: Re A and Im A then,

g(Re A, Im\) = (v¥ = A"u") - (v — Au) (60)
a«g _ 2 * *
TRe X =2ReA|ul* —u"-v—u-v* =0, (61)
99 =2ImA[u? +i(u*-v—u-v*) =0 (62)
OIm A

Therefore the value A minimizing g(Re A,Im A) is %

ut-v u*-v

2
9 2 90\ = T7) = ‘v— Wu‘ = [v|* - >0= (vi-v)|(ut-u) > v -u? (63)




