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⋆ Problem 1 ⋆ Hermite’s polynomials

The Hamiltonian of the simple harmonic oscillator (SHO) in the x-basis and its energy eigenvalues are given by(
− ℏ2

2m
∂2x +

mω2

2
x2

)
ψn(x) = Enψn(x), En = ℏω

(
n+

1

2

)
(1)

The eigenfunctions ψn(x) are closely related to Hermite’s polynomials

Hn(z) = (−1)nez
2

∂nz e
−z2

, n ≥ 0 (2)

1. First, show that the function e−t2+2zt is a generating function of Hermite polynomials, i.e.

e−t2+2zt =

∞∑
n=0

tn

n!
Hn(z) (3)

(Hint: use the Taylor expansion of e−(z−t)2)

2. Using the above result, derive the following recursion relations for Hn:

∂zHn(z) = 2nHn−1(z), n ≥ 1 (4)

and
Hn+1(z) = 2zHn(z)− 2nHn−1(z), n ≥ 1 (5)

Derive the following differential equation using Eqs. (4) and (5)

[∂2z − 2z∂z + 2n]Hn(z) = 0 (6)

(Hint: Eqs. (4) and (5) can be proven by differentiating Eq. (3) with respect to z or with respect to t)

3. Show the orthogonality of the Hermite polynomials,∫ ∞

−∞
dze−z2

Hn(z)Hm(z) = 0, for n ̸= m (7)

(Hint: manipulate Eq. (6) and integrate it over z)
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Solution 1

1. First we show that the function e−t2+2zt is the generating function of the Hermitian polynomials, i.e.

F (z, t) ≡ e−t2+2zt =

∞∑
n=0

tn

n!
Hn(z) (8)

To do this, we use the hint suggested on the exercise sheet

e−t2+2zt = ez
2

e−(z−t)2 = ez
2

∞∑
n=0

tn

n!
× ∂nt e

−(z−t)2
∣∣∣
t=0

= ez
2

∞∑
n=0

tn

n!
× (−1)n∂nz e

−(z−t)2
∣∣∣
t=0

=

∞∑
n=0

tn

n!
× (−1)nez

2

∂nz e
−z2

=

∞∑
n=0

tn

n!
Hn(z)

2. Again we use the hint to derive the recursion relations for Hn:

∂zF = 2tF =

∞∑
n=1

tn

n!
∂zHn(z) =

∞∑
n=0

tn+1

(n+ 1)!
∂zHn+1(z)

⇒2tF = 2

∞∑
n=0

tn+1

n!
Hn(z) =

∞∑
n=0

tn+1

(n+ 1)!
∂zHn+1(z)

Here we took advantage of the fact that ∂zH0 = 0. A coefficient comparison provides the first recursion
equation

∂zHn(z) = 2nHn−1(z) (9)

Differentiating F with respect to t gives

∂tF = (−2t+ 2z)e−t2+2zt =

∞∑
n=0

(
− 2tn+1

n!
Hn(z) +

2ztn

n!
Hn(z)

)
=

∞∑
n=0

ntn−1

n!
Hn(z)

⇒
∞∑

n=0

−2tn

(n− 1)!
Hn−1(z) +

2ztn

n!
Hn(z)−

(n+ 1)tn

(n+ 1)!
Hn+1(z) = 0

Here H−1 and H−2 are not defined. We therefore set this to zero as a matter of form. A coefficient comparison
immediately gives

Hn+1(z) = 2zHn(z)− 2nHn−1(z) (10)

With the help of the two recursion equations, the differential equation for the Hermite polynomials can be
derived

∂2zHn = 2n∂zHn−1 = 4n(n− 1)Hn−2,

− 2z∂zHn = −4nzHn−1

With Eq. (10) we then get

4n(n− 1)Hn−2 − 4nzHn−1 + 2nHn = [∂2z − 2z∂z + 2n]Hn(z) = 0 (11)

3. If we multiply e−z2

Hm to the left of the Eq. (11) and integrate over z, it gives∫ ∞

−∞
dze−z2

Hm(∂2z − 2z∂z)Hn = −2n

∫ ∞

−∞
dze−z2

Hm(z)Hn(z) (12)
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The partial integration of the left side gives∫ ∞

−∞
dze−z2

Hm(∂2z − 2z∂z)Hn = e−z2

Hm∂zHn

∣∣∣∞
−∞

−
∫ ∞

−∞
dz

(
∂ze

−z2

Hm

)
∂zHn

+

∫ ∞

−∞
dze−z2

Hm(−2z∂z)Hn

= −
∫ ∞

−∞
dze−z2

(∂zHm)(∂zHn)

Then,

−
∫ ∞

−∞
dze−z2

(∂zHm)(∂zHn) = −2n

∫ ∞

−∞
dze−z2

Hm(z)Hn(z) (13)

If we swap m and n, we have

−
∫ ∞

−∞
dze−z2

(∂zHn)(∂zHm) = −2m

∫ ∞

−∞
dze−z2

Hm(z)Hn(z) (14)

If we subtract both equations, we get:

(2n− 2m)

∫ ∞

−∞
dze−z2

Hm(z)Hn(z) = 0 (15)

This means that for m ̸= n ∫ ∞

−∞
dze−z2

Hm(z)Hn(z) = 0 (16)

⋆ Problem 2 ⋆ Two-dimensional harmonic oscillator

We consider the two-dimensional harmonic oscillator with the Hamilton operator

Ĥ =
p̂21 + p̂22
2m

+
mω2

2
(x̂21 + x̂22) (17)

where x̂i and p̂i satisfy the commutation relations: [x̂i, x̂j ] = [p̂i, p̂j ] = 0 and [x̂i, p̂j ] = iℏδij where i, j=1,2.

1. Based on Heisenberg’s uncertainty relation, derive a lower bound of the ground state energy.

2. From the position and momentum operators x̂i, p̂j , we define creation and annihilation operators â†i and âi as
follows:

âi = αx̂i + iβp̂i, (18)

â†i = αx̂i − iβp̂j (19)

where α and β are real numbers.

Determine α and β so that:

[âi, â
†
j ] = δij , (20)

[âi, âj ] = [â†i , â
†
j ] = 0 (21)

Ĥ =

2∑
j=1

ℏω
(
N̂j +

1

2

)
(22)

where N̂i = â†i âi.
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3. Prove the following identities:

[N̂i, âj ] = −âjδij , (23)

[N̂i, â
†
j ] = â†jδij , (24)

[N̂i, N̂j ] = 0 (25)

4. Because [N̂1, N̂2] = 0 we can find common eigenstates for N̂1 and N̂2

N̂1|n1, n2⟩ = n1|n1, n2⟩, (26)

N̂2|n1, n2⟩ = n2|n1, n2⟩ (27)

Calculate the effect of â1, â2, â
†
1, â

†
2 on the state |n1, n2⟩ . To do this, calculate the eigenvalues of N̂1 and N̂2

from the respective states â1|n1, n2⟩ , â2|n1, n2⟩, â†1|n1, n2⟩ , â
†
2|n1, n2⟩.

5. Now what are the eigenstates and eigenenergies of the two-dimensional harmonic oscillator? Why does n1, n2 ∈
N0 have to apply? (Hint: you can use the result of part 1 of this assignment that the energy eigenvalues are
bounded from below)

Solution 2

1. Since the harmonic oscillator potential is symmetric about 0, the ground state should also be symmetric (or
anti-symmetric) and therefore ⟨x̂i⟩ = ⟨p̂i⟩ = 0. This means that for i = 1, 2

∆x2i ≡ ⟨x̂2i ⟩ − ⟨x̂i⟩2 = ⟨x̂2i ⟩, ∆p2i ≡ ⟨p̂2i ⟩ − ⟨p̂i⟩2 = ⟨p̂2i ⟩ (28)

Using Heisenberg’s uncertainty relation,

∆x2i∆p
2
i ≥ |⟨[x̂i, p̂i]⟩|2

4
=

ℏ2

4
(29)

Combining Eqs. (28) and (29) gives

⟨p̂2i ⟩ ≥
ℏ2

4⟨x̂2i ⟩
(30)

The energy is given by the expectation value of the Hamilton operator

E = ⟨Ĥ⟩ = ⟨p̂21⟩+ ⟨p̂22⟩
2m

+
mω2

2
(⟨x̂21⟩+ ⟨x̂22⟩)

≥ ℏ2

8m

[ 1

⟨x̂21⟩
+

1

⟨x̂22⟩

]
+
mω2

2
(⟨x̂21⟩+ ⟨x̂22⟩) (31)

We now minimize the above energy with respect to ⟨x̂2i ⟩

ℏ2

8m

1

⟨x̂2i ⟩
+
mω2

2
⟨x̂2i ⟩ ≥

ℏω
2

(32)

Then

E = ⟨Ĥ⟩ ≥
2∑

i=1

ℏω
2

= ℏω (33)

2.

[âi, âj ] = [αx̂i + iβp̂i, αx̂j + iβp̂j ] = iαβ([x̂i, p̂j ] + [p̂j , x̂i]) = 0 (34)

[â†i , â
†
j ] = ([âj , âi])

† = 0 (35)

[âi, â
†
j ] = [αx̂i + iβp̂i, αx̂j − iβp̂j ] = −2iαβ[x̂i, p̂j ] = 2ℏαβδij = δij (36)
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As a result, αβ = 1
2ℏ .

x̂i and p̂i in terms of âi and â
†
i are given by

x̂i =
âi + â†i
2α

, (37)

p̂i =
ℏα
i
(â†i − â†j) (38)

Plug this into the Hamiltonian:

Ĥ =

2∑
i

[
− ℏ2α2

2m
(âi − â†i )

2 +
mω2

8α2
(âi + â†i )

2
]

=

2∑
i=1

[(mω2

8α2
− ℏ2α2

2m

)
(âiâi + â†i â

†
i ) +

(mω2

8α2
+

ℏ2α2

2m

)
(âiâ

†
i + â†i âi)

]
=

2∑
i=1

[(mω2

8α2
− ℏ2α2

2m

)
(âiâi + â†i â

†
i ) +

(mω2

8α2
+

ℏ2α2

2m

)
(2â†i âi + 1)

]
=

2∑
i=1

[(mω2

8α2
− ℏ2α2

2m

)
(âiâi + â†i â

†
i ) + 2

(mω2

8α2
+

ℏ2α2

2m

)
(â†i âi + 1/2)

]
!
=

2∑
j=1

ℏω
[
N̂j + 1/2

]
By comparison, we see that the following must apply

mω2

8α2
− ℏα2

2m
= 0 ⇒ α =

√
mω

2ℏ
. (39)

Thus α has the dimensions of inverse length, and β of inverse momentum. Up to a factor, this could have also
been derived by dimensional analysis.

3. We calculate

[N̂i, âj ] = [â†i âi, âj ] = â†i [âi, âj ] + [â†i , âj ]âi = −δij âi, (40)

[N̂i, â
†
j ] = (−[N̂i, âj ])

† = δij â
†
i , (41)

[N̂i, N̂j ] = [N̂i, â
†
j âj ] = [N̂i, â

†
j ]âj + â†j [N̂i, âj ] = δij(N̂j − N̂j) = 0 (42)

4. From the above commuation relations (Eqs. (40) and (41)), we can guess the effect of âj on the state |n1, n2⟩
as follows:

â1|n1, n2⟩ = c1|n1 − 1, n2⟩, (43)

â2|n1, n2⟩ = c2|n1, n2 − 1⟩ (44)

The annihilation operators â1, â2 reduce their respective quantum numbers by 1. We now want to determine
c1 and c2. We can do this via

⟨n1, n2|â†1â1|n1, n2⟩ = |c1|2⟨n1 − 1, n2|n1 − 1, n2⟩, (45)

⇒ ⟨n1, n2|N̂1|n1, n2⟩ = |c1|2 = n1 (46)

∴ c1 =
√
n1 (47)

Similarly, we can obtain c2 =
√
n2. Therefore

â1|n1, n2⟩ =
√
n1|n1 − 1, n2⟩ (48)

â2|n1, n2⟩ =
√
n2|n1, n2 − 1⟩ (49)

In the same way we find

â†1|n1, n2⟩ =
√
n1 + 1|n1 + 1, n2⟩ (50)

â†2|n1, n2⟩ =
√
n2 + 1|n1, n2 + 1⟩ (51)
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5. The common eigenstates |n1, n2⟩ of N̂1 and N̂2 are also the eigenstates of Ĥ

Ĥ|n1, n2⟩ =
2∑

i=1

ℏω[N̂i + 1/2]|n1, n2⟩ =
2∑

i=1

ℏω[ni + 1/2]|n1, n2⟩ ≡ En1,n2
|n1, n2⟩ (52)

where

En1,n2 =

2∑
i=1

ℏω[ni + 1/2] = ℏω[n1 + n2 + 1]. (53)

We had shown that the intrinsic energies are bounded from below: E ≥ ℏω. As a result, n1 and n2 obey a
lower bound: n1 ≥ 0 and n2 ≥ 0. Additionally, we can also show that n1 and n2 must be integer numbers
larger than −1 by applying the annihilation operators to the state several times:

ân1+1
1 |n1, n2⟩ =

√
n1â

n1
1 |n1 − 1, n2⟩ = · · · =

√
n1!a1|0, n2⟩ = 0. (54)

If ni were not integer, then there would be states with negative ni which implies negative energy. This would
contradict the results of part 1.

Problem 3 Cauchy-Schwarz inequality

1. Derive the Cauchy-Schwarz inequality
|v|2|u|2 ≥ |v · u|2 (55)

by using the fact that

(v − λu)2 ≥ 0 (56)

and minimizing (v − λu)2 with respect to λ. Here v and u are real-valued vectors and λ is a real number.

2. Can we extend the above result to the complex-valued vector case?

(v∗ · v)|(u∗ · u)| ≥ |v∗ · u|2 (57)

Solution 3

1. Set f(λ) = (v − λu)2.
df(λ)

dλ
= 2λ|u|2 − 2λu · v (58)

Therefore the value of λ minimizing f(λ) is u·v
|u|2 .

f(λ) ≥ f(λ =
u · v
|u|2

) =
(
v − u · v

|u|2
u
)2

= |v|2 − |u · v|2

|u|2
≥ 0 ⇒ |v|2|u|2 ≥ |v · u|2 (59)

2. For complex valued case, we can consider λ as two parameters: Reλ and Imλ then,

g(Reλ, Imλ) = (v∗ − λ∗u∗) · (v − λu) (60)

∂g

∂ Reλ
= 2Reλ|u|2 − u∗ · v − u · v∗ = 0, (61)

∂g

∂ Imλ
= 2 Imλ|u|2 + i(u∗ · v − u · v∗) = 0 (62)

Therefore the value λ minimizing g(Reλ, Imλ) is u∗·v
|u|2 .

g(λ) ≥ g(λ =
u∗ · v
|u|2

) =
∣∣∣v − u∗ · v

|u|2
u
∣∣∣2 = |v|2 − |u∗ · v|2

|u|2
≥ 0 ⇒ (v∗ · v)|(u∗ · u)| ≥ |v∗ · u|2 (63)
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