Moderne Theoretische Physik I Grundlagen der Quantenmechanik

Summer Semester 2024 Exercise Sheet 6

Prof. Jörg Schmalian Grgur Palle, Iksu Jang Karlsruher Institut für Technologie (KIT) **Due date:** 07. 06. 2024.

The problems whose solutions you need to upload are designated with stars.

* Problem 1 * Double Dirac delta potential

Consider a particle of mass m subject to the potential

$$V(x) = -V_0 \,\delta(x - L) - V_0 \,\delta(x + L), \tag{1}$$

where $V_0 > 0$.

- 1. What condition must a wavefunction $\psi(x)$ that satisfies the stationary Schrödinger equation obey at $x = \pm L$?
- 2. Find all the bound states of this potential. No need to normalize the states.
- 3. Explicitly find the energies, assuming they are small. What does this mean for LV_0 ? Discuss.

\star Problem 2 \star Coherent states

Consider the destruction operator

$$\hat{a} = \frac{\hat{x} + \mathrm{i}\,\hat{p}}{\sqrt{2}}\tag{2}$$

with all units set to unity $(m = \omega_0 = \hbar = 1)$.

- 1. Find the eigenstates $\phi_z(x)$ of the destruction operator in real space (x basis). That is, solve $\hat{a}\phi_z(x) = z\phi_z(x)$ for $z \in \mathbb{C}$. Normalize the states according to $\langle \phi_z | \phi_z \rangle = e^{|z|^2}$ and chose their global phase so that they depend only on z, and not on Re z or Im z separately. These states are called coherent states.
- 2. Given a wavefunction in real space $\psi(x) \equiv \langle x | \psi \rangle$, find the corresponding wavefunction $(\mathcal{B}\psi)(z) \equiv \langle \phi_z | \psi \rangle$ in the coherent state basis $\phi_z(x) = \langle x | \phi_z \rangle$. This change of basis is known as a Bargmann transformation (cf. Fourier transformation).
- 3. Find how the operators \hat{x} , \hat{p} , \hat{a} , and \hat{a}^{\dagger} act in the coherent state basis.
- 4. Verify that $[\hat{x}, \hat{p}] = i$ and $[\hat{a}, \hat{a}^{\dagger}] = 1$ still holds in the coherent-state-basis representation.

Problem 3 Heisenberg's uncertainty principle

Consider a normalized wavefunction $\psi(x)$.

- 1. If $\langle \hat{x} \rangle = x_0$, what modification of $\psi(x)$ has $\langle \hat{x} \rangle = \langle \psi | \hat{x} | \psi \rangle = 0$?
- 2. If $\langle \hat{p} \rangle = p_0$, what modification of $\psi(x)$ has $\langle \hat{p} \rangle = \langle \psi | \hat{p} | \psi \rangle = 0$? Here $\hat{p} = -i\hbar \partial_x$, as usual.

Hence, without loss of generality, we shall now consider a $\psi(x)$ with $\langle \hat{x} \rangle = \langle \hat{p} \rangle = 0$.

- 3. Prove Heisenberg's uncertainty principle by applying the Cauchy-Schwarz inequality to the states $|\phi\rangle \equiv \hat{x} |\psi\rangle$ and $|\chi\rangle \equiv \hat{p} |\psi\rangle$.
- 4. Now recall when the Cauchy-Schwarz inequality is an equality. Exploit this fact to derive the states which minimize $\sigma_x \sigma_p$. Explicitly check this by evaluating the standard deviations $\sigma_{x,p}$.