Moderne Theoretische Physik I Grundlagen der Quantenmechanik

Summer Semester 2024 Exercise Sheet 6

Prof. Jörg Schmalian Grgur Palle, Iksu Jang Karlsruher Institut für Technologie (KIT) **Due date:** 07. 06. 2024.

The problems whose solutions you need to upload are designated with stars.

* Problem 1 * Double Dirac delta potential

Consider a particle of mass m subject to the potential

$$V(x) = -V_0 \,\delta(x - L) - V_0 \,\delta(x + L), \tag{1}$$

where $V_0 > 0$.

- 1. What condition must a wavefunction $\psi(x)$ that satisfies the stationary Schrödinger equation obey at $x = \pm L$?
- 2. Find all the bound states of this potential. No need to normalize the states.
- 3. Explicitly find the energies, assuming they are small. What does this mean for LV_0 ? Discuss.

Solution 1

1. As in Exercise Sheet 3, we integrate the stationary Schrödinger equation

$$\frac{-\hbar^2}{2m}\partial_x^2\psi(x) - V_0\,\delta(x-L)\psi(x) - V_0\,\delta(x+L)\psi(x) = E\psi(x)$$

around $x = \pm L$ to get

$$\frac{-\hbar^2}{2m} \left[\psi'(-L+\epsilon) - \psi'(-L-\epsilon) \right] = V_0 \psi(-L)$$
$$\frac{-\hbar^2}{2m} \left[\psi'(L+\epsilon) - \psi'(L-\epsilon) \right] = V_0 \psi(L)$$

for infinitesimal $\epsilon > 0$.

2. For $x \neq \pm L$, the solutions of the stationary Schrödinger equation have the form of exponentials:

$$\psi(x) = \begin{cases} A \mathrm{e}^{\kappa(x+L)}, & \text{for } x < -L, \\ B \cosh(\kappa x) + C \sinh(\kappa x), & \text{for } -L < x < L, \\ D \mathrm{e}^{-\kappa(x-L)}, & \text{for } L < x, \end{cases}$$

where the solutions which exponentially diverge at infinity have been dropped (they aren't localized/bounded). Here

$$\kappa = \frac{\sqrt{-2mE}}{\hbar}$$

The wavefunction must be continuous at $x = \pm L$. Hence

$$A = B \cosh(\kappa L) - C \sinh(\kappa L),$$

$$D = B \cosh(\kappa L) + C \sinh(\kappa L),$$

The $x = \pm L$ conditions in addition give:

$$(\lambda - \kappa)A = \kappa [B\sinh(\kappa L) - C\cosh(\kappa L)],$$

$$(\lambda - \kappa)D = \kappa [B\sinh(\kappa L) + C\cosh(\kappa L)],$$

where

$$\lambda = \frac{2mV_0}{\hbar^2}$$

By dividing the two sets of equations

$$\lambda - \kappa = \kappa \frac{B \sinh(\kappa L) - C \cosh(\kappa L)}{B \cosh(\kappa L) - C \sinh(\kappa L)} = \kappa \frac{B \sinh(\kappa L) + C \cosh(\kappa L)}{B \cosh(\kappa L) + C \sinh(\kappa L)}$$

which implies that

BC = 0.

So either C = 0, in which case we have an even solution, or B = 0, in which case we have an odd solution. The even-parity solution has $A = B \cosh(\kappa L) = D$ and its energy is found by inverting the transcedental equation

$$(1 + \tanh \kappa_* L)\kappa_* L = \lambda L \qquad \Longrightarrow E = -\frac{\hbar^2}{2m}\kappa_*^2$$

The odd-parity solution has $-A = C \sinh(\kappa L) = D$ and its energy is found by inverting

$$(1 + \coth \kappa_* L)\kappa_* L = \lambda L \qquad \Longrightarrow E = -\frac{\hbar^2}{2m}\kappa_*^2$$

3. For small κ_*L , we find that

$$(1 + \tanh \kappa_* L) \kappa_* L = \kappa_* L + \cdots$$
$$(1 + \coth \kappa_* L) \kappa_* L = 1 + \kappa_* L + \cdots$$

Hence the even-parity solution exists for all λ , and in the limit of small λ it has the energy $E = -\frac{\hbar^2}{2m}\lambda^2 = -2mV_0^2/\hbar^2$. This agrees with Exercise Sheet 3, Problem 2.

The odd-parity solution only exists for $\lambda L \ge 1$. It has the energy $E = -\frac{\hbar^2}{2mL^2}(\lambda L - 1)^2$.

\star Problem 2 \star Coherent states

Consider the destruction operator

$$\hat{a} = \frac{\hat{x} + \mathrm{i}\,\hat{p}}{\sqrt{2}} \tag{2}$$

with all units set to unity $(m = \omega_0 = \hbar = 1)$.

- 1. Find the eigenstates $\phi_z(x)$ of the destruction operator in real space (x basis). That is, solve $\hat{a}\phi_z(x) = z\phi_z(x)$ for $z \in \mathbb{C}$. Normalize the states according to $\langle \phi_z | \phi_z \rangle = e^{|z|^2}$ and chose their global phase so that they depend only on z, and not on Re z or Im z separately. These states are called coherent states.
- 2. Given a wavefunction in real space $\psi(x) \equiv \langle x | \psi \rangle$, find the corresponding wavefunction $(\mathcal{B}\psi)(z) \equiv \langle \phi_z | \psi \rangle$ in the coherent state basis $\phi_z(x) = \langle x | \phi_z \rangle$. This change of basis is known as a Bargmann transformation (cf. Fourier transformation).
- 3. Find how the operators \hat{x} , \hat{p} , \hat{a} , and \hat{a}^{\dagger} act in the coherent state basis.
- 4. Verify that $[\hat{x}, \hat{p}] = i$ and $[\hat{a}, \hat{a}^{\dagger}] = 1$ still holds in the coherent-state-basis representation.

Solution 2

1. The normalized-to-unity solution of

$$\hat{a}\phi_z(x) = z\phi_z(x),$$
$$(\partial_x + x)\phi_z(x) = \sqrt{2}z\phi_z(x)$$

is

$$\tilde{\phi}_z(x) = \frac{1}{\pi^{1/4}} \exp\left(-\frac{x^2}{2} + \sqrt{2}xz - |\operatorname{Re} z|^2\right).$$

By multiplying with $e^{|z|^2/2}$ we get $\langle \phi_z | \phi_z \rangle = e^{|z|^2}$, and by multiplying with $e^{-i \operatorname{Im} z \operatorname{Re} z}$ we get

$$\phi_z(x) = \frac{1}{\pi^{1/4}} \exp\left(-\frac{x^2}{2} + \sqrt{2}xz - \frac{z^2}{2}\right)$$

2. The Bargmann transformation is found by inserting a resolution of unity in the x basis:

$$(\mathcal{B}\psi)(z) \equiv \langle \phi_z | \psi \rangle = \langle \phi_z | \hat{1} | \psi \rangle = \langle \phi_z | \cdot \int dx \, |x \rangle \langle x | \cdot | \psi \rangle$$
$$= \int dx \, \langle \phi_z | x \rangle \, \langle x | \psi \rangle = \int dx \, \langle x | \phi_z \rangle^* \, \psi(x)$$
$$= \frac{1}{\pi^{1/4}} \int dx \exp\left(-\frac{x^2}{2} + \sqrt{2}xz^* - \frac{z^{*2}}{2}\right) \psi(x).$$

3. Since

$$\begin{split} \partial_x \phi_z(x) &= (\sqrt{2}z - x)\phi_z(x), \\ \partial_z \phi_z(x) &= (\sqrt{2}x - z)\phi_z(x), \\ \implies x\phi_z(x) &= \frac{z + \partial_z}{\sqrt{2}}\phi_z(x), \\ \implies \partial_x \phi_z(x) &= \frac{z - \partial_z}{\sqrt{2}}\phi_z(x), \\ \hat{a}\phi_z(x) &= z\phi_z(x), \\ \implies \hat{a}^{\dagger}\phi_z(x) &= \frac{\hat{x} - \hat{i}\hat{p}}{\sqrt{2}}\phi_z(x) = \frac{x - \partial_x}{\sqrt{2}}\phi_z(x) = \partial_z\phi_z(x) \end{split}$$

and $\phi_z^*(x) = \phi_{z^*}(x)$, it follows that

$$\begin{aligned} \hat{x}(\mathcal{B}\psi)(z) &= \langle \phi_z | \hat{x}\psi \rangle = \langle \hat{x}\phi_z | \psi \rangle = \frac{z^* + \partial_{z^*}}{\sqrt{2}}(\mathcal{B}\psi)(z), \\ \hat{p}(\mathcal{B}\psi)(z) &= \langle \phi_z | \hat{p}\psi \rangle = \langle \hat{p}\phi_z | \psi \rangle = \mathbf{i}\frac{z^* - \partial_{z^*}}{\sqrt{2}}(\mathcal{B}\psi)(z), \\ \hat{a}^{\dagger}(\mathcal{B}\psi)(z) &= \langle \phi_z | \hat{a}^{\dagger}\psi \rangle = \langle \hat{a}\phi_z | \psi \rangle = z^*(\mathcal{B}\psi)(z), \\ \hat{a}(\mathcal{B}\psi)(z) &= \langle \phi_z | \hat{a}\psi \rangle = \langle \hat{a}^{\dagger}\phi_z | \psi \rangle = \partial_{z^*}(\mathcal{B}\psi)(z). \end{aligned}$$

4. This immediately follows from the fact that $[\partial_{z^*}, z^*] = 1$.

Problem 3 Heisenberg's uncertainty principle

Consider a normalized wavefunction $\psi(x)$.

- 1. If $\langle \hat{x} \rangle = x_0$, what modification of $\psi(x)$ has $\langle \hat{x} \rangle = \langle \psi | \hat{x} | \psi \rangle = 0$?
- 2. If $\langle \hat{p} \rangle = p_0$, what modification of $\psi(x)$ has $\langle \hat{p} \rangle = \langle \psi | \hat{p} | \psi \rangle = 0$? Here $\hat{p} = -i\hbar \partial_x$, as usual.

Hence, without loss of generality, we shall now consider a $\psi(x)$ with $\langle \hat{x} \rangle = \langle \hat{p} \rangle = 0$.

- 3. Prove Heisenberg's uncertainty principle by applying the Cauchy-Schwarz inequality to the states $|\phi\rangle \equiv \hat{x} |\psi\rangle$ and $|\chi\rangle \equiv \hat{p} |\psi\rangle$.
- 4. Now recall when the Cauchy-Schwarz inequality is an equality. Exploit this fact to derive the states which minimize $\sigma_x \sigma_p$. Explicitly check this by evaluating the standard deviations $\sigma_{x,p}$.

Solution 3

- 1. One simply translates the wavefunction: $\phi(x) \equiv \psi(x_0 + x)$ has $\langle \phi | \hat{x} | \phi \rangle = 0$.
- 2. One multiplies the wavefunction by a phase factor: $\phi(x) \equiv e^{-ip_0 x/\hbar} \psi(x)$ has $\langle \phi | \hat{p} | \phi \rangle = 0$. This is the same as a translation in momentum space.
- 3. The Cauchy-Schwarz inequality states that

$$\begin{split} |\langle \phi | \phi \rangle| \cdot |\langle \chi | \chi \rangle| &\geq |\langle \phi | \chi \rangle|^2 \\ \implies |\langle \hat{x} \psi | \hat{x} \psi \rangle| \cdot |\langle \hat{p} \psi | \hat{p} \psi \rangle| &\geq |\langle \hat{x} \psi | \hat{p} \psi \rangle|^2 \\ \implies |\langle \psi | \hat{x}^2 | \psi \rangle| \cdot |\langle \psi | \hat{p}^2 | \psi \rangle| &\geq |\langle \psi | \hat{x} \hat{p} | \psi \rangle|^2 \\ \implies \sigma_x^2 \sigma_n^2 &\geq |\langle \psi | \hat{x} \hat{p} | \psi \rangle|^2 \end{split}$$

Now we use the fact that in $\hat{x}\hat{p} = \frac{1}{2}(\hat{x}\hat{p} + \hat{p}\hat{x}) + \frac{1}{2}(\hat{x}\hat{p} - \hat{p}\hat{x})$, the anticommutator is Hermitian, whereas the commutator is anti-Hermitian. Thus in

$$z = \langle \psi | \hat{x} \hat{p} | \psi \rangle = \left\langle \psi | \frac{1}{2} (\hat{x} \hat{p} + \hat{p} \hat{x}) | \psi \right\rangle + \left\langle \psi | \frac{1}{2} (\hat{x} \hat{p} - \hat{p} \hat{x}) | \psi \right\rangle = \operatorname{Re} z + \operatorname{i} \operatorname{Im} z$$

the anticommutator gives the real part, whereas the commutator gives the imaginary part. Since we know that $|z|^2 \ge |\text{Im} z|^2$, it follows that

$$\sigma_x^2 \sigma_p^2 \ge \frac{1}{4} \left| \langle \psi | [\hat{x}, \hat{p}] | \psi \rangle \right|^2 = \hbar^2 / 4 \implies \sigma_x \sigma_p \ge \hbar / 2.$$

4. The Cauchy-Schwarz inequality is saturated when the two vectors are proportional (parallel) to each other. Thus we need to solve

$$\begin{split} \hat{p} \left| \psi \right\rangle &= \left| \chi \right\rangle = \tilde{\lambda} \left| \phi \right\rangle = \tilde{\lambda} \hat{x} \left| \psi \right\rangle \\ -i\hbar \partial_x \psi(x) &= (2i\hbar \lambda) \cdot x \psi(x) \end{split}$$

for $\lambda = \tilde{\lambda}/(2i\hbar) \in \mathbb{C}$. The solution is

$$\psi(x) = A \exp(-\lambda x^2).$$

For $\operatorname{Re} \lambda > 0$, this is normalizeable, with $A = \sqrt[4]{2 \operatorname{Re} \lambda_1 / \pi}$. Evaluating the averages, one finds that

$$\begin{split} &\langle\psi|\hat{x}^2|\psi\rangle = \frac{1}{4\operatorname{Re}\lambda} = \sigma_x^2,\\ &\langle\psi|\hat{p}^2|\psi\rangle = \frac{(\operatorname{Re}\lambda)^2 + (\operatorname{Im}\lambda)^2}{\operatorname{Re}\lambda} = \sigma_p^2,\\ &\langle\psi|\hat{x}\hat{p}|\psi\rangle = -\frac{\operatorname{Re}\lambda + \operatorname{i}\operatorname{Im}\lambda}{2\operatorname{Re}\lambda},\\ &\langle\psi|\hat{p}\hat{x}|\psi\rangle = \frac{\operatorname{Re}\lambda - \operatorname{i}\operatorname{Im}\lambda}{2\operatorname{Re}\lambda}. \end{split}$$

So even though $\sigma_x \sigma_p = |\langle \psi | \hat{x} \hat{p} | \psi \rangle|$ holds for all λ , Heisenberg's inequality only holds when $\text{Im } \lambda = 0$. Indeed, this is expected because in Heisenberg's inequality we dropped the anticommutator part, which is equivalent to demanding that $\langle \psi | \hat{x} \hat{p} | \psi \rangle = - \langle \psi | \hat{p} \hat{x} | \psi \rangle \implies \text{Im } \lambda = 0$. Thus Gaussian wavepackets of the general form

$$\psi(x) = \frac{1}{\sqrt[4]{2\sigma_x^2 \pi}} \exp\left(\mathrm{i}\frac{p_0 x}{\hbar} - \frac{(x-x_0)^2}{4\sigma_x^2}\right).$$

minimize Heisenberg's inequality.