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⋆ Problem 1 ⋆ Double Dirac delta potential

Consider a particle of mass m subject to the potential

V (x) = −V0 δ(x− L)− V0 δ(x+ L), (1)

where V0 > 0.

1. What condition must a wavefunction ψ(x) that satisfies the stationary Schrödinger equation obey at x = ±L?

2. Find all the bound states of this potential. No need to normalize the states.

3. Explicitly find the energies, assuming they are small. What does this mean for LV0? Discuss.

Solution 1

1. As in Exercise Sheet 3, we integrate the stationary Schrödinger equation

−ℏ2

2m
∂2xψ(x)− V0 δ(x− L)ψ(x)− V0 δ(x+ L)ψ(x) = Eψ(x)

around x = ±L to get

−ℏ2

2m
[ψ′(−L+ ϵ)− ψ′(−L− ϵ)] = V0ψ(−L),

−ℏ2

2m
[ψ′(L+ ϵ)− ψ′(L− ϵ)] = V0ψ(L)

for infinitesimal ϵ > 0.

2. For x ̸= ±L, the solutions of the stationary Schrödinger equation have the form of exponentials:

ψ(x) =


Aeκ(x+L), for x < −L,
B cosh(κx) + C sinh(κx), for −L < x < L,

De−κ(x−L), for L < x,
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where the solutions which exponentially diverge at infinity have been dropped (they aren’t localized/bounded).
Here

κ =

√
−2mE

ℏ
.

The wavefunction must be continuous at x = ±L. Hence

A = B cosh(κL)− C sinh(κL),

D = B cosh(κL) + C sinh(κL),

The x = ±L conditions in addition give:

(λ− κ)A = κ[B sinh(κL)− C cosh(κL)],

(λ− κ)D = κ[B sinh(κL) + C cosh(κL)],

where

λ =
2mV0
ℏ2

.

By dividing the two sets of equations

λ− κ = κ
B sinh(κL)− C cosh(κL)

B cosh(κL)− C sinh(κL)
= κ

B sinh(κL) + C cosh(κL)

B cosh(κL) + C sinh(κL)

which implies that

BC = 0.

So either C = 0, in which case we have an even solution, or B = 0, in which case we have an odd solution.

The even-parity solution has A = B cosh(κL) = D and its energy is found by inverting the transcedental
equation

(1 + tanhκ∗L)κ∗L = λL =⇒ E = − ℏ2

2m
κ2∗.

The odd-parity solution has −A = C sinh(κL) = D and its energy is found by inverting

(1 + cothκ∗L)κ∗L = λL =⇒ E = − ℏ2

2m
κ2∗.

3. For small κ∗L, we find that

(1 + tanhκ∗L)κ∗L = κ∗L+ · · ·
(1 + cothκ∗L)κ∗L = 1 + κ∗L+ · · ·

Hence the even-parity solution exists for all λ, and in the limit of small λ it has the energy E = − ℏ2

2mλ
2 =

−2mV 2
0 /ℏ2. This agrees with Exercise Sheet 3, Problem 2.

The odd-parity solution only exists for λL ≥ 1. It has the energy E = − ℏ2

2mL2 (λL− 1)2.

⋆ Problem 2 ⋆ Coherent states

Consider the destruction operator

â =
x̂+ i p̂√

2
(2)

with all units set to unity (m = ω0 = ℏ = 1).
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1. Find the eigenstates ϕz(x) of the destruction operator in real space (x basis). That is, solve âϕz(x) = zϕz(x)

for z ∈ C. Normalize the states according to ⟨ϕz|ϕz⟩ = e|z|
2

and chose their global phase so that they depend
only on z, and not on Re z or Im z separately. These states are called coherent states.

2. Given a wavefunction in real space ψ(x) ≡ ⟨x|ψ⟩, find the corresponding wavefunction (Bψ)(z) ≡ ⟨ϕz|ψ⟩ in the
coherent state basis ϕz(x) = ⟨x|ϕz⟩. This change of basis is known as a Bargmann transformation (cf. Fourier
transformation).

3. Find how the operators x̂, p̂, â, and â† act in the coherent state basis.

4. Verify that [x̂, p̂] = i and [â, â†] = 1 still holds in the coherent-state-basis representation.

Solution 2

1. The normalized-to-unity solution of

âϕz(x) = zϕz(x),

(∂x + x)ϕz(x) =
√
2zϕz(x)

is

ϕ̃z(x) =
1

π1/4
exp

(
−x

2

2
+

√
2xz − |Re z|2

)
.

By multiplying with e|z|
2/2 we get ⟨ϕz|ϕz⟩ = e|z|

2

, and by multiplying with e−i Im zRe z we get

ϕz(x) =
1

π1/4
exp

(
−x

2

2
+

√
2xz − z2

2

)
.

2. The Bargmann transformation is found by inserting a resolution of unity in the x basis:

(Bψ)(z) ≡ ⟨ϕz|ψ⟩ =
〈
ϕz

∣∣1̂∣∣ψ〉 = ⟨ϕz| ·
∫

dx |x⟩⟨x| · |ψ⟩

=

∫
dx ⟨ϕz|x⟩ ⟨x|ψ⟩ =

∫
dx ⟨x|ϕz⟩∗ ψ(x)

=
1

π1/4

∫
dx exp

(
−x

2

2
+
√
2xz∗ − z∗2

2

)
ψ(x).

3. Since

∂xϕz(x) = (
√
2z − x)ϕz(x),

∂zϕz(x) = (
√
2x− z)ϕz(x),

=⇒ xϕz(x) =
z + ∂z√

2
ϕz(x),

=⇒ ∂xϕz(x) =
z − ∂z√

2
ϕz(x),

âϕz(x) = zϕz(x),

=⇒ â†ϕz(x) =
x̂− i p̂√

2
ϕz(x) =

x− ∂x√
2

ϕz(x) = ∂zϕz(x)

and ϕ∗z(x) = ϕz∗(x), it follows that

x̂(Bψ)(z) = ⟨ϕz|x̂ψ⟩ = ⟨x̂ϕz|ψ⟩ =
z∗ + ∂z∗

√
2

(Bψ)(z),

p̂(Bψ)(z) = ⟨ϕz|p̂ψ⟩ = ⟨p̂ϕz|ψ⟩ = i
z∗ − ∂z∗

√
2

(Bψ)(z),

â†(Bψ)(z) =
〈
ϕz

∣∣â†ψ〉 = ⟨âϕz|ψ⟩ = z∗(Bψ)(z),
â(Bψ)(z) = ⟨ϕz|âψ⟩ =

〈
â†ϕz

∣∣ψ〉 = ∂z∗(Bψ)(z).

3



4. This immediately follows from the fact that [∂z∗ , z∗] = 1.

Problem 3 Heisenberg’s uncertainty principle

Consider a normalized wavefunction ψ(x).

1. If ⟨x̂⟩ = x0, what modification of ψ(x) has ⟨x̂⟩ = ⟨ψ|x̂|ψ⟩ = 0?

2. If ⟨p̂⟩ = p0, what modification of ψ(x) has ⟨p̂⟩ = ⟨ψ|p̂|ψ⟩ = 0? Here p̂ = −iℏ∂x, as usual.

Hence, without loss of generality, we shall now consider a ψ(x) with ⟨x̂⟩ = ⟨p̂⟩ = 0.

3. Prove Heisenberg’s uncertainty principle by applying the Cauchy-Schwarz inequality to the states |ϕ⟩ ≡ x̂ |ψ⟩
and |χ⟩ ≡ p̂ |ψ⟩.

4. Now recall when the Cauchy-Schwarz inequality is an equality. Exploit this fact to derive the states which
minimize σxσp. Explicitly check this by evaluating the standard deviations σx,p.

Solution 3

1. One simply translates the wavefunction: ϕ(x) ≡ ψ(x0 + x) has ⟨ϕ|x̂|ϕ⟩ = 0.

2. One multiplies the wavefunction by a phase factor: ϕ(x) ≡ e−ip0x/ℏψ(x) has ⟨ϕ|p̂|ϕ⟩ = 0. This is the same as
a translation in momentum space.

3. The Cauchy-Schwarz inequality states that

|⟨ϕ|ϕ⟩| · |⟨χ|χ⟩| ≥ |⟨ϕ|χ⟩|2

=⇒ |⟨x̂ψ|x̂ψ⟩| · |⟨p̂ψ|p̂ψ⟩| ≥ |⟨x̂ψ|p̂ψ⟩|2

=⇒
∣∣〈ψ∣∣x̂2∣∣ψ〉∣∣ · ∣∣〈ψ∣∣p̂2∣∣ψ〉∣∣ ≥ |⟨ψ|x̂p̂|ψ⟩|2

=⇒ σ2
xσ

2
p ≥ |⟨ψ|x̂p̂|ψ⟩|2

Now we use the fact that in x̂p̂ = 1
2 (x̂p̂ + p̂x̂) + 1

2 (x̂p̂ − p̂x̂), the anticommutator is Hermitian, whereas the
commutator is anti-Hermitian. Thus in

z = ⟨ψ|x̂p̂|ψ⟩ =
〈
ψ
∣∣ 1
2 (x̂p̂+ p̂x̂)

∣∣ψ〉+ 〈
ψ
∣∣ 1
2 (x̂p̂− p̂x̂)

∣∣ψ〉 = Re z + i Im z

the anticommutator gives the real part, whereas the commutator gives the imaginary part. Since we know that
|z|2 ≥ |Im z|2, it follows that

σ2
xσ

2
p ≥ 1

4
|⟨ψ|[x̂, p̂]|ψ⟩|2 = ℏ2/4 =⇒ σxσp ≥ ℏ/2.

4. The Cauchy-Schwarz inequality is saturated when the two vectors are proportional (parallel) to each other.
Thus we need to solve

p̂ |ψ⟩ = |χ⟩ = λ̃ |ϕ⟩ = λ̃x̂ |ψ⟩
−iℏ∂xψ(x) = (2iℏλ) · xψ(x)

for λ = λ̃/(2iℏ) ∈ C. The solution is

ψ(x) = A exp
(
−λx2

)
.
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For Reλ > 0, this is normalizeable, with A = 4
√
2Reλ1/π. Evaluating the averages, one finds that

〈
ψ
∣∣x̂2∣∣ψ〉 =

1

4Reλ
= σ2

x,〈
ψ
∣∣p̂2∣∣ψ〉 =

(Reλ)2 + (Imλ)2

Reλ
= σ2

p,

⟨ψ|x̂p̂|ψ⟩ = −Reλ+ i Imλ

2Reλ
,

⟨ψ|p̂x̂|ψ⟩ = Reλ− i Imλ

2Reλ
.

So even though σxσp = |⟨ψ|x̂p̂|ψ⟩| holds for all λ, Heisenberg’s inequality only holds when Imλ = 0. Indeed,
this is expected because in Heisenberg’s inequality we dropped the anticommutator part, which is equivalent
to demanding that ⟨ψ|x̂p̂|ψ⟩ = −⟨ψ|p̂x̂|ψ⟩ =⇒ Imλ = 0. Thus Gaussian wavepackets of the general form

ψ(x) =
1

4
√
2σ2

xπ
exp

(
i
p0x

ℏ
− (x− x0)

2

4σ2
x

)
.

minimize Heisenberg’s inequality.
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