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The problems whose solutions you need to upload are designated with stars.

* Problem 1 x Double Dirac delta potential

Consider a particle of mass m subject to the potential
V(z)=—-Vob(z — L) = Vo oz + L), (1)
where Vy > 0.

1. What condition must a wavefunction ¥ (x) that satisfies the stationary Schrodinger equation obey at @ = £L7
2. Find all the bound states of this potential. No need to normalize the states.

3. Explicitly find the energies, assuming they are small. What does this mean for LV;? Discuss.

Solution 1

1. As in Exercise Sheet 3, we integrate the stationary Schrédinger equation

I () — Vo sl — L)) — Vool + L)) = Bol)

2m
around x = +L to get

2

W (L )~ (L — )] = V(- L),

—h?
- W(L+e) —¢'(L—e]=Vouo(L)

2m
for infinitesimal ¢ > 0.

2. For z # £L, the solutions of the stationary Schréodinger equation have the form of exponentials:

Aet(@+L) for v < —L,
Y(x) = { Bceosh(kz) + Csinh(kz), for —L <z < L,
De—r(z—L), for L < =z,



where the solutions which exponentially diverge at infinity have been dropped (they aren’t localized /bounded).
Here

_ V—2mE
h

The wavefunction must be continuous at x = ==L. Hence

A = Bcosh(kL) — C'sinh(kL),
D = Bcosh(kL) + Csinh(kL),

The x = +L conditions in addition give:

(A= K)A = K[Bsinh(kL) — C cosh(xkL)],
(A= k)D = k[Bsinh(kL) + C cosh(xkL)],

where

2mVO
A=

By dividing the two sets of equations

Bsinh(kL) — C cosh(kL) Bsinh(kL) + C cosh(kL)
A—K=kK - =K -
Bcosh(kL) — C'sinh(kL) Bcosh(kL) 4+ C'sinh(xkL)

which implies that
BC =0.

So either C' = 0, in which case we have an even solution, or B = 0, in which case we have an odd solution.

The even-parity solution has A = Bcosh(kL) = D and its energy is found by inverting the transcedental
equation

h2
(1 +tanh k, L)k L = AL = E=——K’
2m

*e

The odd-parity solution has —A = C'sinh(kL) = D and its energy is found by inverting

h2
(1+ coth ke L)k L = AL = EF=-——&2
2m
3. For small k. L, we find that
(1+tanh Ky L)ko L = k4 L+ - - -
(1+cothku L)k L =14+ koL + -+
Hence the even-parity solution exists for all A\, and in the limit of small A it has the energy E = —%)\2 =
—2mVgZ /h?. This agrees with Exercise Sheet 3, Problem 2.
The odd-parity solution only exists for AL > 1. It has the energy E = fzyz%(AL —1)2.

* Problem 2 x Coherent states

Consider the destruction operator

with all units set to unity (m =wy =h =1).



1. Find the eigenstates ¢.(z) of the destruction operator in real space (x basis). That is, solve a¢.(z) = z¢.(x)
for z € C. Normalize the states according to {¢.|¢.) = el?” and chose their global phase so that they depend
only on z, and not on Re z or Im z separately. These states are called coherent states.

2. Given a wavefunction in real space ¥ (x) = (z|¢), find the corresponding wavefunction (By)(z) = (¢, |¢) in the
coherent state basis ¢, (z) = (z|¢.). This change of basis is known as a Bargmann transformation (cf. Fourier
transformation).

3. Find how the operators &, p, &, and a' act in the coherent state basis.

4. Verify that [Z,p] = i and [a,a'] = 1 still holds in the coherent-state-basis representation.

Solution 2
1. The normalized-to-unity solution of
ag.(r) = 2¢-(x),
(0 + 2):(2) = V229, (2)

is
o ]. IEQ \/5 R 2
cbz(x)fmexp —?—i— xz — |Rez|” ).
By multiplying with el#1°/2 we get (¢.|d.) = e‘z‘2, and by multiplying with e71Tm#Rez we get
1 x? 22
o.(x) = 7 exp(—2 +V2xz — 2).
2. The Bargmann transformation is found by inserting a resolution of unity in the x basis:
(B0)(E) = (6:10) = (0:]]0) = (02| [ @zl
=/waxw@wo=/duﬂ@fw@>

*2
= 11/4/dxexp<—2+\[xz —22 >1/J(x)

3. Since
aLd)z(x) = (\/§Z - $)¢z($),
8zd)z(x) = (\/i%’ - Z)(bZ(x)’

z+ 0,
- x¢z(x) = \/5 d)z(x)a
z—0,
= O0:0.(x) = \/i b= (),
&d)z(z) = Z¢z($),
qubz(m) = T 1p¢2($) = r= 0 ¢Z(-T) = angz(l')

V2 V2

and ¢%(z) = ¢.+(z), it follows that

#(BY)(2) = (6:139) = (2.l = 2=

f
BBY)(2) = (d:]pv) = (pd:|v) =i"—==" f = (By)(2),

al(By)(z) = (¢:|aty) = (ag.|v) = 2" (BY)(2),
a(By)(2) = (p.|ayy) = (al¢.|v) = 0.- (BY)(2).

(BY)(2),




4.

This immediately follows from the fact that [9,«, z*] = 1.

Problem 3 Heisenberg’s uncertainty principle

Consider a normalized wavefunction ¥(z).

1.
2.

If (Z) = x, what modification of ¥ (z) has (z) = (¢¥|Z|y) = 0?7
If (p) = po, what modification of ¥(x) has (p) = (Y|p|y)) = 0?7 Here p = —ihid,, as usual.

Hence, without loss of generality, we shall now consider a ¢ (z) with () = (p) = 0.

3.

Prove Heisenberg’s uncertainty principle by applying the Cauchy-Schwarz inequality to the states |¢) = 2 |1))
and |x) = p [¢)).

Now recall when the Cauchy-Schwarz inequality is an equality. Exploit this fact to derive the states which
minimize o,0,. Explicitly check this by evaluating the standard deviations o, ;.

Solution 3

1.
2.

One simply translates the wavefunction: ¢(x) = 1p(xo + x) has ($|Z|¢p) = 0.

One multiplies the wavefunction by a phase factor: ¢(x) = e~ 0%/")(z) has (¢|p|¢) = 0. This is the same as
a translation in momentum space.

The Cauchy-Schwarz inequality states that

(@10 - (bl > [0
= l@vlav)l- [(pvip)
= [(@la*|9)] - [wlp*[)] =

= oq0;, > |[(Ylaply)]

ol
> [(&lp)|
|(w|2ple))?

2

Now we use the fact that in p = f(a?p + pi) + %(xp — pZ), the anticommutator is Hermitian, whereas the
commutator is anti-Hermitian. Thus in

2= (laply) = (|5 (@D +p2)|v) + (¥|5(@p — p2)

the anticommutator gives the real part, whereas the commutator gives the imaginary part. Since we know that
12]* > |Im 2|?, it follows that

>: Rez+ilmz

o2 2 L Wle Al = /4 = 0u0, > /2

. The Cauchy-Schwarz inequality is saturated when the two vectors are proportional (parallel) to each other.

Thus we need to solve

pl) = Ix) = Xo) = Aé [v)
—ihd,p(x) = (21hA) - 1p(w)

for A\ = A/(2i%) € C. The solution is

¥(z) = Aexp(—Az?).



For Re A > 0, this is normalizeable, with A = {/2Re A; /7. Evaluating the averages, one finds that
1

) _ _ 2
(WIE%v) = Rex = o=
Re \)? Im )2

(wf? ) = LA HEDAT_ o

o ~ Red+ilmA
(Y|zply) = T 9Rex

o _Re)\—iIm)\
<¢|P$|¢>*W

So even though 0,0, = [(¥|2p|¢)| holds for all A, Heisenberg’s inequality only holds when Im A = 0. Indeed,
this is expected because in Heisenberg’s inequality we dropped the anticommutator part, which is equivalent
to demanding that (¢|Zp|v) = — (¥|pZ|yy) = Im A = 0. Thus Gaussian wavepackets of the general form

1 por (& —x0)?
¥ = T exp (122 - (22000,

minimize Heisenberg’s inequality.



