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⋆ Problem 1 ⋆ Reflection and transmission for a Dirac delta potential

Consider a particle of mass m subject to the potential

V (x) = V0 δ(x) (1)

where V0 can be positive or negative.

1. Assume that the particle is coming from the left (x < 0) with a momentum ℏk, i.e., assume that ψ(x) has
a eikx component as x → −∞, but does not have a e−ikx component as x → +∞. Find the energy and the
corresponding wavefunction ψ(x).

2. Define the reflection coefficient as

R ≡ lim
x→−∞

∣∣∣∣ jreflectedjincoming

∣∣∣∣ (2)

and the transmission coefficient as

T ≡ lim
x→∞

∣∣∣∣jtransmitted

jincoming

∣∣∣∣ , (3)

where j is the current (∂t |ψ|2 + ∂xj = 0). Calculate them for the ψ(x) of part 1. Check that R+ T = 1.

Next, let us put a wall a distance L in front of the Dirac delta well:

V (x) =

{
V0 δ(x), when x ≤ L,

∞, when x > L.
(4)

3. For this new potential, find the wavefunction ψ(x) for a particle incoming from the left with momentum ℏk.

4. Explicitly calculate the reflection coefficient for the ψ(x) of part 3. Discuss.
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Solution 1

1. The energy is simply given by

E =
ℏ2k2

2m
.

The wavefunction has the form

ψ(x) =

{
eikx + re−ikx, for x < 0,

teikx, for x > 0,

where we have rescaled the solution so that the incoming eikx has a unity prefactor. The kinetic energy density
is finite only when ψ(x) is continuous:

1 + r = t.

Integrating

−ℏ2

2m
ψ′′(x) + V0 δ(x)ψ(x) = Eψ(x)

from x = −ϵ to +ϵ in the usual way gives

−ℏ2

2m
[ψ′(+ϵ)− ψ′(−ϵ)] + V0ψ(0) = 0,

−ℏ2

2m
ik(t− 1 + r) + V0t = 0.

Solving for r, t yields:

r =
−1

1− i
ℏ2k
mV0

,

t =
1

1 + i
mV0
ℏ2k

.

2. The current is in general given by

j(x) =
ℏ
m

Imψ∗(x)∂xψ(x).

For the ψ(x) of part 1, this gives

j(x) =

{
jincoming + jreflected, for x < 0,

jtransmitted, for x > 0,

where

jincoming =
ℏk
m
,

jreflected = |r|2 −ℏk
m

,

jtransmitted = |t|2 ℏk
m
.
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Hence

R = |r|2 =
1

1 +

(
ℏ2k
mV0

)2 ,

T = |t|2 =
1

1 +

(
mV0
ℏ2k

)2 .

This indeed satisfies R+ T = 1, as it must.

3. This time, the wavefunction has the form

ψ(x) =


eikx + re−ikx, for x < 0,

aeikx + be−ikx, for 0 < x < L,

0, for L < x.

The continuity conditions are

1 + r = a+ b,

aeikL + be−ikL = 0,

and integrating the stationary Schrödinger equation around x gives:

−ℏ2

2m
ik(a− b− 1 + r) + V0(a+ b) = 0.

Solving for r, a, b yields

r = −
1−

(
1 + i

ℏ2k
mV0

)
ei2kL

1− i
ℏ2k
mV0

− ei2kL
,

a = −e−i2kLb =
1

1 + i
mV0
ℏ2k

(1− ei2kL)
.

4. For the ψ(x) of part 3:

j(x) =

{
jincoming + jreflected, for x < 0,

0, for x > 0,

where

jincoming =
ℏk
m
,

jreflected = |r|2 −ℏk
m

.

Since there is no transmission now, we expect R = 1. Indeed, if we define

r0 ≡ −1

1− i
ℏ2k
mV0

,

then

r = ei2kL
r0
r∗0

1 + r∗0e
−i2kL

1 + r0ei2kL

from which it is obvious that

R = |r|2 = 1.
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⋆ Problem 2 ⋆ Orbital angular momentum

In Hamiltonian mechanics, the Poisson bracket between two phase-space functions f(qi, pi) and g(qi, pi) is defined as

{f, g} ≡
∑
i

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (5)

1. Calculate the Poisson bracket {Li, Lj} between the orbital angular momentum operators Li =
∑

jk ϵijkxjpk,
that is L = x× p. (Hint: use {f, gh} = {f, g}h+ g{f, h}.)

2. Next, evaluate {Li,L
2}, {L±, Lz}, and {L+, L−}, where L2 ≡ L2

x + L2
y + L2

z and L± ≡ Lx ± iLy.

3. If Lx and Ly are conserved quantities relative to some Hamiltonian H, show that Lz must also be conserved.
(Hint: exploit a fundamental property of the Poisson bracket.)

According to the canonical quantization procedure, if f(xi, pi) is a function on phase space, then in quantum mechan-

ics it becomes the operator f̂ ≡ f(x̂i, p̂i), with the Poisson brackets moreover mapping onto commutators according
to

[f̂ , ĝ] = iℏ {̂f, g}. (6)

Thus [x̂i, p̂j ] = iℏ ̂{xi, pj} = iℏδij 1̂ = iℏδij , for instance.

4. Use this to find [L̂i, L̂j ], [L̂i, L̂
2], [L̂±, L̂z], and [L̂+, L̂−] from the previous parts of this problem.

5. If a state |ϕ⟩ has

L̂2 |ϕ⟩ = α |ϕ⟩ , Lz |ϕ⟩ = µ |ϕ⟩ , (7)

what are the corresponding eigenvalues of |ϕ+⟩ ≡ L̂+ |ϕ⟩ and |ϕ−⟩ ≡ L̂− |ϕ⟩?

Solution 2

1. By using

{xi, pj} = δij

and the linearity of the Poisson bracket (product differentiation rule), we find that

{Li, Lj} =
∑
abcd

ϵiabϵjcd{xapb, xcpd} =
∑
abcd

ϵiabϵjcd[{xapb, xc}pd + xc{xapb, pd}]

=
∑
abcd

ϵiabϵjcd[xa{pb, xc}pd + {xa, xc}pbpd + xcxa{pb, pd}+ xc{xa, pd}pb]

=
∑
abcd

ϵiabϵjcd[−xaδbcpd + xcδadpb] =
∑
abc

ϵiabϵjcb[xapc − paxc]

=
∑
abc

(δijδac − δicδja)[xapc − xcpa] = xipj − xjpi =
∑
k

ϵijkLk.

2. By exploiting the product rule again we get

{Li,L
2} =

∑
j

{Li, LjLj} =
∑
j

Lj{Li, Lj}+ {Li, Lj}Lj

=
∑
jk

LjϵijkLk + ϵijkLkLj =
∑
jk

ϵijk(LjLk − LjLk) = 0.

Moreover

{L±, Lz} = {Lx, Lz} ± i{Ly, Lz} = −Ly ± iLx = ±i(Lx ± iLy) = ±iL±,

{L+, L−} = {Lx + iLy, Lx − iLy} = i{Ly, Lx} − i{Lx, Ly} = −2iLz.
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3. The Jacobi identity states that

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0

and applied to Lx, Ly, H it gives the desired result:

d

dt
Lz = {Lz, H} = {{Lx, Ly}, H} = −{{Ly, H}, Lx} − {{H,Lx}, Ly} = −{0, Lx} − {0, Ly} = 0.

4. By applying the prescription (6), one readily finds that

[L̂i, L̂j ] = iℏ
∑
k

ϵijkL̂k,

[L̂i, L̂
2] = 0,

[L̂±, L̂z] = ∓ℏL̂±,

[L̂+, L̂−] = 2ℏL̂z.

One can prove this directly too. The algebraic manipulations are analogous to the classical ones since [Â, B̂Ĉ] =
[Â, B̂]Ĉ + B̂[Â, Ĉ].

5. Since L̂2 commutes with L̂±:

L̂2 |ϕ±⟩ = L̂2L̂± |ϕ⟩ = L̂±L̂
2 |ϕ⟩ = L̂±α |ϕ⟩ = αL̂± |ϕ⟩ = α |ϕ±⟩ .

On the other hand:

Lz |ϕ±⟩ = L̂zL̂± |ϕ⟩ = (L̂±Lz ± ℏL±) |ϕ⟩ = (L̂±µ± ℏL̂±) |ϕ⟩ = (µ± ℏ) |ϕ±⟩ .

Problem 3 Particle in a finite-depth well in 3 dimensions

Consider a particle described by the Hamiltonian

Ĥ =
p̂2x + p̂2y + p̂2z

2m
+ V0Θ(x̂2 + ŷ2 + ẑ2 −R2) (8)

where r = (x, y, z) are the Cartesian coordinates, p̂x = −iℏ∂x, p̂y = −iℏ∂y, and p̂z = −iℏ∂z are the momentum
operators, and Θ(x) is the Heaviside step function. V0 > 0 is the potential well depth and R > 0 is its radial size.

1. Write the Hamiltonian as a differential operator in spherical coordinates (in the position representation).
Express the angular part in terms of the differential operator L̂2 = L̂2

x + L̂2
y + L̂2

z, where L̂ = r̂ × p̂ is the
angular momentum operator.

2. Next, assume that you are given a wavefunction Y (θ, ϕ) that depends on the spherical angles θ and ϕ and that
is an eigenvector of the L̂2 operator with an eigenvalue λ > 0:

L̂2Y (θ, ϕ) = ℏ2λY (θ, ϕ). (9)

If a stationary state of energy E has the form ψ(r) = ψ(r, θ, ϕ) = φ(r)Y (θ, ϕ), how does the corresponding
radial stationary Schrödinger equation for φ(r) look like?

3. Now consider the special case when Y (θ, ϕ) = 1. What is the value of λ? Solve the radial stationary Schrödinger
equation for this case and find all the bound states that do not depend on the spherical angles. If any
transcendental equations arise, formulate their solutions graphically.

4. Does a bounded state always exist? If not, how large does V0 have to be?
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Solution 3

1. In the position representation

Ĥ =
−ℏ2

2m
∇2 + V0Θ(r̂ −R).

On the other hand

L̂2 = (r̂ × p̂) · (r̂ × p̂) =
∑
iabcd

ϵiabϵicdx̂ap̂bx̂cp̂d

=
∑
iabcd

ϵiabϵicdx̂a(−iℏδbc + x̂cp̂b)p̂d =
∑
abcd

(δacδbd − δadδbc)x̂a(−iℏδbc + x̂cp̂b)p̂d

=
∑
ad

(δad − 3δad)(−iℏx̂ap̂d) +
∑
ab

x̂ax̂ap̂bp̂b − x̂ax̂bp̂ap̂b

= 2iℏ
∑
a

x̂ap̂a +
∑
ab

x̂ax̂ap̂bp̂b − x̂ax̂bp̂ap̂b

where all the indices go over {1, 2, 3}. Now notice that
∑

a x̂ap̂a = r̂ · p̂ = −iℏr∂r isolates the radial gradient.
Hence

L̂2 = 2iℏ(−iℏr∂r)− ℏ2r2∇2 − (−iℏr)2∂2r = −ℏ2r2∇2 + ℏ2(2r∂r + r2∂2r )

= −ℏ2r2∇2 + ℏ2r∂2r r,

where ∂r is an operator that acts on everything to the right. The final result is

Ĥ =
−ℏ2

2m

1

r

∂2

∂r2
r +

1

2mr2
L̂2 + V0Θ(r −R).

Since we know the Laplace operator in spherical coordinates:

∇2ψ =
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂ϕ2

=
1

r

∂2

∂r2
(rψ) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂ϕ2
,

if follows that

L̂2 =
−ℏ2

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

−ℏ2

sin2 θ

∂2ψ

∂ϕ2

acts only on the angular coordinates.

2. The stationary Schrödinger equation is

Ĥψ =
−ℏ2

2m

1

r

∂2

∂r2
(rψ) +

1

2mr2
L̂2ψ + V0Θ(r −R)ψ

=
−ℏ2

2m

1

r

∂2

∂r2
(rφY ) +

1

2mr2
L̂2(φY ) + V0Θ(r −R)φY

=
−ℏ2

2m

1

r

∂2

∂r2
(rφ)Y +

1

2mr2
(L̂2Y )φ+ V0Θ(r −R)φY

=

[
−ℏ2

2m

1

r

∂2

∂r2
(rφ) +

1

2mr2
ℏ2λφ+ V0Θ(r −R)φ

]
Y = [Eφ]Y,

so its radial part is

−ℏ2

2m

1

r

∂2

∂r2
(rφ) +

1

2mr2
ℏ2λφ+ V0Θ(r −R)φ = Eφ.
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3. Since Y (θ, ϕ) = 1 does not depend on the angles, whereas L̂2 differentiates in the angles, it follows that λ = 0.
So we want to solve

−ℏ2

2m

∂2

∂r2
[rφ(r)] + V0Θ(r −R)rφ(r) = E rφ(r).

The solutions of this equation are given by

rφ(r) =

{
A sin(kr) +B cos(kr), for r ≤ R,

Ce−κ(r−R) +Deκ(r−R), for r > R,

where

ℏ2k2

2m
= V0 −

ℏ2κ2

2m
= E.

A finite D would result in a divergence at infinity and so is forbidden for bounded states, D = 0. A finite
B implies that φ(r) ∼ r−1 diverges for small r. Although this divergence is integrable in the sense that the

volume integral
∫∞
0

dr r2 |φ(r)|2 still converges so φ can still be normalized, this divergence would mean that
ψ(r) is strongly discontinuous at r = 0 with an infinite kinetic energy. Hence B = 0 too. The bounded state
are thus given by

rφ(r) = A

{
sin(kr), for r ≤ R,

sin(kR)e−κ(r−R), for r > R.

φ(r) also needs to be continuous at r = R (there is no Dirac delta potential there), which gives the condition:

k cos(kR) = −κ sin(kR).

In terms of the dimensionless

k̃ ≡ kR, κ̃ ≡ κR

we thus have the transcendental set of equations

k̃2 + κ̃2 =
2mV0R

2

ℏ2
≡ ν2,

κ̃ = −k̃ cot k̃.

The first defines a circle and the second a curve which may or may not cross the circle. For instance:

Notice that changing the sign of k̃ → −k̃ only changes φ(r) by an absolute sign. Without loss of generality, we
may thus consider k̃ > 0.
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4. κ̃ must be positive for the solution to be bounded. On the other hand, k̃ is necessarily smaller than ν. The
function −k̃ cot k̃ becomes positive only for k̃ > π/2. Hence ν has to be larger than π/2 for a bounded state to
exist; see above. This corresponds to the condition

V0 >
π2ℏ2

8mR2
.
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