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⋆ Problem 1 ⋆ Operators as transformation generators

The exponential of an operator Â is defined as

exp(Â) = eÂ ≡
∞∑

n=0

1

n!
Ân. (1)

(Recall also the discussion of Problem 1 of Exercise Sheet 2.)

1. Consider a Hermitian operator Q̂ and a state |ψ⟩. If |ψ′⟩ = e−iQ̂ |ψ⟩, then find the formal expression for the Â′

entering 〈
ψ′
∣∣∣Â∣∣∣ψ′

〉
=
〈
ψ
∣∣∣Â′
∣∣∣ψ〉 . (2)

2. Now define the operator

Ât = eitQ̂Âe−itQ̂, (3)

where t is a real parameter. Find its n-th derivative at t = 0:

dn

dtn
Ât

∣∣∣∣
t=0

= ? (4)

3. Prove the Baker-Campbell-Hausdorff lemma

eitQ̂Âe−itQ̂ =

∞∑
n=0

(it)n

n!
adn

Q̂
Â. (5)

Here adQ̂ Â ≡ [Q̂, Â] so that ad2
Q̂
Â = [Q̂, [Q̂, Â]], ad3

Q̂
Â = [Q̂, [Q̂, [Q̂, Â]]], etc.

4. Calculate

eiap̂/ℏx̂e−iap̂/ℏ = ? (6)

e−ikx̂/ℏp̂eikx̂/ℏ = ? (7)

where x̂ and p̂x are the position and momentum operators and a, k are real numbers. Given a state |ψ⟩, what
does e−iap̂/ℏ |ψ⟩ and eikx̂/ℏ |ψ⟩ physically do to this state?
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5. Now consider the angular momentum along z, L̂z = x̂p̂y − ŷp̂x. Calculate

eiφL̂z/ℏx̂e−iφL̂z/ℏ = ? (8)

eiφL̂z/ℏŷe−iφL̂z/ℏ = ? (9)

What sort of transformation does this represent physically?

Solution 1

1. One finds that 〈
ψ′
∣∣∣Â∣∣∣ψ′

〉
=
〈
e−iQ̂ψ

∣∣∣Âe−iQ̂ψ
〉
=

〈
ψ

∣∣∣∣(e−iQ̂
)†
Âe−iQ̂ψ

〉
=
〈
ψ
∣∣∣e+iQ̂†

Âe−iQ̂
∣∣∣ψ〉 =

〈
ψ
∣∣∣eiQ̂Âe−iQ̂

∣∣∣ψ〉 ,
=⇒ Â′ = eiQ̂Âe−iQ̂.

This motivates the study of Ât.

2. Using the product rule

d

dt
Ât =

deitQ̂

dt
Âe−itQ̂ + eitQ̂

dÂ

dt
e−itQ̂ + eitQ̂Â

de−itQ̂

dt

= iQ̂eitQ̂Âe−itQ̂ + eitQ̂Â(−itQ̂)e−itQ̂

= iQ̂
(
eitQ̂Âe−itQ̂

)
−
(
eitQ̂Âe−itQ̂

)
iQ̂ = i[Q̂, Ât]

Here the key thing to notice is that Q̂ commutes with itself so its exponential has similar formal properties as
in the case of scalars. Similarly

d2

dt2
Ât =

d

dt
i[Q̂, Ât] = i[

dQ̂

dt
, Ât] + i[Q̂,

d

dt
Ât]

= i[Q̂, i[Q̂, Ât]] = i2[Q̂, [Q̂, Ât]] = i2 ad2
Q̂
Ât,

and by induction

dn

dtn
Ât = in adn

Q̂
Ât.

At t = 0, Ât = Â.

3. The Baker-Campbell-Hausdorff lemma directly follows from Taylor’s theorem applied to Ât:

eitQ̂Âe−itQ̂ = Ât =

∞∑
n=0

tn

n!

dn

dtn
Ât

∣∣∣∣
t=0

=

∞∑
n=0

tn

n!
in adn

Q̂
Ât,

which we wanted to prove.

4. Since

ia/ℏ adp̂ x̂ = ia[p̂, x̂]/ℏ = a,

−ik/ℏ adx̂ p̂ = −ik[x̂, p̂]/ℏ = k

are both scalars, it follows that the higher order commutators in the Baker-Campbell-Hausdorff lemma all
vanish. Thus only the n = 0, 1 terms survive:

eiap̂/ℏx̂e−iap̂/ℏ = x̂+ a,

e−ikx̂/ℏp̂eikx̂/ℏ = p̂+ k.

From the above we see that e−iap̂/ℏ |ψ⟩ is translated in real space by a relative to |ψ⟩, whereas eikx̂/ℏ |ψ⟩ is
translated in momentum space (boosted, velocity increased) by k relative to |ψ⟩.
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5. We start by noticing that

iφ[L̂z, x̂]/ℏ = −φŷ,
iφ[L̂z, ŷ]/ℏ = φx̂

map into each under commutation by L̂z. Hence

eiφL̂z/ℏx̂e−iφL̂z/ℏ =

∞∑
n=0

(iφ)n

ℏnn!
adn

L̂z
x̂ = x̂− φ

1!
ŷ − φ2

2!
x̂2 +

φ3

3!
ŷ + · · ·

=

∞∑
n=0

(−1)nφ2n

(2n)!
x̂−

∞∑
n=0

(−1)nφ2n+1

(2n+ 1)!
ŷ

= cos(φ)x̂− sin(φ)ŷ.

Analogously one finds

eiφL̂z/ℏŷe−iφL̂z/ℏ = cos(φ)ŷ + sin(φ)x̂.

This mapping between x̂ and ŷ is a rotation around the z axis by φ.

⋆ Problem 2 ⋆ Particle in a central potential in two dimensions

Consider a particle subject to a radially symmetric potential V (r), r =
√
x2 + y2, in two dimensions.

1. Formulate the Schrödinger equation in polar coordinates. Using separation of variables, derive the radial
Schrödinger equation for a state of fixed energy E.

2. Now use a substitution R(r) = r−αu(r) and choose α so that one of the terms vanishes. Find the effective
potential Veff(r) from the resulting radial Schrödinger equation.

3. Next, find the energies when V (r) = −e2/r. You may invoke the results from the analysis of the 3D hydrogen
atom from the lectures, if relevant.

Solution 2

1. Since in polar coordinates

∇2 = ∂2r +
1

r
∂r +

1

r2
∂2ϕ,

the stationary Schrödinger equation has the form:[
−ℏ2

2m

(
∂2r +

1

r
∂r

)
− ℏ2

2mr2
∂2ϕ + V (r)

]
ψ(r, ϕ) = E ψ(r, ϕ).

Assuming ψ(r, ϕ) = R(r)Y (ϕ), we find that

2mr2

ℏ2
· 1

R

[
−ℏ2

2m

(
∂2r +

1

r
∂r

)
+ V (r)− E

]
R(r) =

1

Y
∂2ϕY (ϕ) = −µ2,

where µ is constant because it cannot depend on either r or ϕ (notice how it equals functions which depend
on only r and ϕ of the left-hand side so µ = fr(r) = fϕ(ϕ) and thereby ∂rµ = ∂rfϕ = 0 and ∂ϕµ = ∂ϕfr = 0).
Y (ϕ+ 2π) = Y (ϕ) = eiµϕ must be periodic so µ ∈ Z is an integer. Thus the radial Schrödinger equation is:[

−ℏ2

2m

(
∂2r +

1

r
∂r

)
+

ℏ2µ2

2mr2
+ V (r)

]
R(r) = ER(r).
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2. For R(r) = r−αu(r) we find that

R′′ +
1

r
R′ =

1

rα

[
u′′ +

1− 2α

r
u′ +

α2

r2
u

]
,

so setting α = 1/2 eliminates the second term. This gives the revised radial Schrödinger equation:[
−ℏ2

2m
∂2r + Veff(r)

]
u(r) = E u(r),

where the effective potential equals

Veff(r) =
ℏ2(µ2 − 1/4)

2mr2
+ V (r).

3. If we set

µ2 − 1

4
= ℓ(ℓ+ 1) =⇒ ℓ = −1

2
+ |µ|

we obtain the same radial differential equation as in three dimensions. During the lectures we found that it
has a bounded solution only when

n− ℓ− 1 ≡ p

is a non-zero integer. The energies are therefore given by

E = − 1

n2
Ry = − 1

(ℓ+ 1 + p)2
Ry = − 1

(N + 1
2 )

2
Ry,

where N = |µ|+ p ∈ {0, 1, 2, . . .} spans the non-zero integers.

Problem 3 Particle in a modified Coulomb potential

Consider a particle in three dimensions subject to the spherically symmetric potential:

V (r) = −Ze
2

r
+
γ

r2
. (10)

Find the energies of the bound states for this modified Coulomb potential. What happens when γ < 0? (Hint: follow
the steps you went through when solving the hydrogen atom problem during class.)

Solution 3

The only difference in the calculation compared to the Coulomb case is in the differential equation for the radial part
of the wave function: [

1

2m
p̂2r + Veff(r)

]
R(r) = ER(r),

where p̂r = −iℏ 1
r

∂
∂r r and now

Veff(r) = −Ze
2

r
+

ℏ2

2m

ℓ(ℓ+ 1)

r2
+
γ

r2
.

Thus we need to do two changes. First we notice that

ℏ2

2m
ℓ(ℓ+ 1) → ℏ2

2m
ℓ(ℓ+ 1) + γ

and therefore it will be useful to define

λ(λ+ 1) = ℓ(ℓ+ 1) +
2mγ

ℏ2
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to obtain a formally identical equation. Second, the natural length scale has been changed to

ã =
ℏ2

Zme2

so that in terms of

x =
2

n

r

ã
, E = −Z

2

n2
Ry

for R(r) = r−1u(r) we obtain the same differential equation from the lectures:

u′′(x)− λ(λ+ 1)

x2
u+

(
n

x
− 1

4

)
u = 0.

In the lectures we showed that
n− λ− 1 ≡ p

has to be a non-zero integer for u(x) not to diverge at infinity. Thus the energies are given by

Ep,ℓ = − Z2(
p+

1

2
+

1

2

√
(2ℓ+ 1)2 +

8mγ

ℏ2

)2Ry

where p, ℓ ∈ {0, 1, 2, . . .}. Notice that

λ = −1

2
+

1

2

√
(2ℓ+ 1)2 +

8mγ

ℏ2

can become negative for small enough ℓ and sufficiently negative γ. A negative λ would give a R(r) ∼ rλ that
diverges at r = 0, which isn’t allowed.
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