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The problems whose solutions you need to upload are designated with stars.

* Problem 1 x Operators as transformation generators

The exponential of an operator A is defined as

exp(4 4= ini

(Recall also the discussion of Problem 1 of Exercise Sheet 2.)

1. Consider a Hermitian operator Q and a state [¢). If |¢/) = e~iQ |4}, then find the formal expression for the A’

entering
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2. Now define the operator

where t is a real parameter. Find its n-th derivative at t = 0:
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3. Prove the Baker-Campbell-Hausdorff lemma
eltQ fe—itQ — i (@) ad A
B — nl @
Here adg A = [Q, A] so that ad® A = [Q,[Q, A]], ad} A = @, @, [@, A]]], etc.

4. Calculate
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where & and p, are the position and momentum operators and a, k are real numbers. Given a state [¢), what

does e=1%P/ |4} and e##/7 |¢)) physically do to this state?



5. Now consider the angular momentum along z, L.= TPy — Y. Calculate
eigoflz/hjje—izpflz/ﬁ _— (8)
eigoliz/hge—igaﬁz/h — 9 (9)

What sort of transformation does this represent physically?

Solution 1

1. One finds that

This motivates the study of A,.
2. Using the product rule
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= iQeitQ/Xe*itQ + eitQA(fitQ)e*itQ
=iQ(e"QAeQ) — (e Q)i =i[Q, A]

Here the key thing to notice is that Q commutes with itself so its exponential has similar formal properties as
in the case of scalars. Similarly

and by induction

Att=0, A, = A.
3. The Baker-Campbell-Hausdorff lemma directly follows from Taylor’s theorem applied to Ay
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which we wanted to prove.
4. Since
ia/hads & = 1alp, z|/h = a,
—ik/had; p = —ik[z,p]/h =k

are both scalars, it follows that the higher order commutators in the Baker-Campbell-Hausdorff lemma all
vanish. Thus only the n = 0,1 terms survive:
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From the above we see that e™'%/" |¢)) is translated in real space by a relative to |1), whereas e*%/% |¢)) is
translated in momentum space (boosted, velocity increased) by k relative to |).



5. We start by noticing that

ip[L.,2]/h = —¢3,

map into each under commutation by L.. Hence
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= cos(p)& — sin(p)g.
Analogously one finds
ewizmye_i“’iz/h = cos(p)y + sin(p)z.

This mapping between & and ¢ is a rotation around the z axis by ¢.

* Problem 2 x Particle in a central potential in two dimensions

Consider a particle subject to a radially symmetric potential V(r), r = y/z2 + y2, in two dimensions.

1. Formulate the Schrodinger equation in polar coordinates. Using separation of variables, derive the radial
Schrodinger equation for a state of fixed energy E.

2. Now use a substitution R(r) = r~*u(r) and choose « so that one of the terms vanishes. Find the effective
potential Vog(r) from the resulting radial Schrodinger equation.

3. Next, find the energies when V(r) = —e?/r. You may invoke the results from the analysis of the 3D hydrogen
atom from the lectures, if relevant.

Solution 2

1. Since in polar coordinates
1 1
2 2 2
Ve=0;+ ;6,, + r26¢’

the stationary Schrodinger equation has the form:
— |07+ -0, | — 78(25 +V (7) ¢(7 ¢) = E¢(7 ¢)
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Assuming ¢(r, ¢) = R(r)Y (¢), we find that
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where p is constant because it cannot depend on either r or ¢ (notice how it equals functions which depend
on only r and ¢ of the left-hand side so u = f.(r) = f4(¢) and thereby 0, = O, fy = 0 and Ogp = g fr = 0).
Y (¢ +27) = Y(¢) = e*® must be periodic so p € Z is an integer. Thus the radial Schrédinger equation is:

b:j (63 + iar> + ;;’fz + V(r)} R(r) = E R(r).



2. For R(r) = r~“u(r) we find that
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so setting a = 1/2 eliminates the second term. This gives the revised radial Schrédinger equation:
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where the effective potential equals

R (p? —1/4)

Verr(r) = 2mr?
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3. If we set
5 1 1
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we obtain the same radial differential equation as in three dimensions. During the lectures we found that it
has a bounded solution only when
n—¢—1=p

is a non-zero integer. The energies are therefore given by
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where N = |u|+p € {0,1,2,...} spans the non-zero integers.

Problem 3 Particle in a modified Coulomb potential

Consider a particle in three dimensions subject to the spherically symmetric potential:
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Vi) = r r2

Find the energies of the bound states for this modified Coulomb potential. What happens when v < 07 (Hint: follow
the steps you went through when solving the hydrogen atom problem during class.)

Solution 3

The only difference in the calculation compared to the Coulomb case is in the differential equation for the radial part
of the wave function:

|5y Vo) Rlr) = R,

where p,. = —ih%%r and now
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Thus we need to do two changes. First we notice that
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and therefore it will be useful to define
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to obtain a formally identical equation. Second, the natural length scale has been changed to
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for R(r) = r~lu(r) we obtain the same differential equation from the lectures:
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In the lectures we showed that
n—A—1=p

has to be a non-zero integer for u(x) not to diverge at infinity. Thus the energies are given by
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where p, £ € {0,1,2,...}. Notice that
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can become negative for small enough ¢ and sufficiently negative . A negative A would give a R(r) ~ r* that
diverges at r = 0, which isn’t allowed.




