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⋆ Problem 1 ⋆ Particle in an electromagnetic field

In the presence of an external classical electromagnetic field, the Hamiltonian describing a charged particle is

Ĥ(t) =
[p̂− qA(r, t)]

2

2m
+ qφ(r, t) + V (r), (1)

where p̂ = −iℏ∇, q is the charge, and φ and A are the scalar and vector potentials. We’re in 3D and we shall use
the position representation and SI units. Because we are treating the electromagnetic field classically, φ and A are
real numbers, rather than operators, and their space and time-dependence is imposed externally.

1. If you are given a solution of the Schrödinger equation

iℏ∂tΨ(r, t) = ĤΨ(r, t), (2)

what Schrödinger equation does the wavefunction Ψ′(r, t) = e−iqλ(r,t)/ℏΨ(r, t) satisfy? Absorb the changes into
redefinitions of A and φ. What does this transformation from (Ψ,A, φ) to (Ψ′,A′, φ′) represent physically?

2. Find the charge current j(r, t) that enters the charge conservation law

∂tρ(r, t) +∇ · j(r, t) = 0, (3)

where ρ(r, t) = q |Ψ(r, t)|2.

3. How do ρ(r, t) and j(r, t) transform under the transformation of part 1 of this problem?

Solution 1

1. Let us rewrite the Schrödinger equation in the following form{
[−iℏ∂t + qφ(r, t)] +

[−iℏ∇− qA(r, t)]
2

2m
+ V (r)

}
Ψ(r, t) = 0.

The key identity is:
e−if(r,t)/ℏ(−iℏ∂µ)eif(r,t)/ℏ = −iℏ∂µ + [∂µf(r, t)].
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Hence once we multiply the initial Schrödinger equation with e−iqλ(r,t)/ℏ from the left

e−iqλ(r,t)/ℏ

{
[−iℏ∂t + qφ(r, t)] +

[−iℏ∇− qA(r, t)]
2

2m
+ V (r)

}
eiqλ(r,t)/ℏΨ′(r, t) = 0

it becomes {
[−iℏ∂t + qφ′(r, t)] +

[−iℏ∇− qA′(r, t)]
2

2m
+ V (r)

}
Ψ′(r, t) = 0

with

Ψ′(r, t) = e−iqλ(r,t)/ℏΨ(r, t),

φ′(r, t) = φ(r, t) + ∂tλ(r, t),

A′(r, t) = A(r, t)−∇λ(r, t).

Physically, this is a gauge transformation. Thus in quantum mechanics, gauge transforming the scalar and
vector potentials needs to be accompanied with a change in the phase of the wavefunction.

2. The charge conservation law is derived in the same way as in the neutral case. We take the Schrödinger equation
for Ψ and its adjoint 

[
−iℏ
−→
∂ t + qφ(r, t)

]
+

[
−iℏ
−→
∇ − qA(r, t)

]2
2m

+ V (r)

Ψ(r, t) = 0,

Ψ†(r, t)


[
+iℏ
←−
∂ t + qφ(r, t)

]
+

[
+iℏ
←−
∇ − qA(r, t)

]2
2m

+ V (r)

 = 0,

contract them with Ψ† and Ψ, respectively,

Ψ†(r, t)


[
−iℏ
−→
∂ t + qφ(r, t)

]
+

[
−iℏ
−→
∇ − qA(r, t)

]2
2m

+ V (r)

Ψ(r, t) = 0,

Ψ†(r, t)


[
+iℏ
←−
∂ t + qφ(r, t)

]
+

[
+iℏ
←−
∇ − qA(r, t)

]2
2m

+ V (r)

Ψ(r, t) = 0,

and subtract to get:

Ψ†(r, t)

{[
−iℏ
−→
∂ t + qφ(r, t)

]
−
[
+iℏ
←−
∂ t + qφ(r, t)

]

+

[
−iℏ
−→
∇ − qA(r, t)

]2
2m

+ V (r)−

[
+iℏ
←−
∇ − qA(r, t)

]2
2m

− V (r)

}
Ψ(r, t) = 0.

The φ and V terms cancel, as do some of the additional terms that have A after writing out the latter terms.
The final result is

−iℏ
q
∂tρ(r, t)− i

ℏ
q
∇ · j(r, t) = 0,

that is

∂tρ(r, t) +∇ · j(r, t) = 0
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with

ρ(r, t) = q |Ψ(r, t)|2 ,

j(r, t) =
q

m
Ψ†(r, t)

[
−iℏ 1

2 (
−→
∇ −

←−
∇)− qA(r, t)

]
Ψ(r, t).

3. ρ is obviously invariant because the absolute values does not change under phase rotations. For j we use the
same trick from before to show that

j(r, t) =
1

m
Ψ†(r, t)

[
−iℏ 1

2 (
−→
∇ −

←−
∇)− qA(r, t)

]
Ψ(r, t)

=
1

m
Ψ′†(r, t)

[
−iℏ 1

2 (
−→
∇ −

←−
∇)− qA′(r, t)

]
Ψ′(r, t)

with Ψ′(r, t) = e−iqλ(r,t)/ℏΨ(r, t) and A′(r, t) = A(r, t)−∇λ(r, t), is also invariant. Thus ρ and j are gauge
invariant, as they must be since they are physically measurable quantities just like, e.g., the electric field.

⋆ Problem 2 ⋆ Spin precession

Consider a spin- 12 particle coupled to the magnetic field:

Ĥ = −µ̂ ·B = −(µ̂xBx + µ̂yBy + µ̂zBz), (4)

where µ̂ = −γŜ is the magnetic dipole moment, γ is the gyromagnetic ratio, Ŝ = ℏ
2 σ̂ is a vector of spin operators,

and B is the magnetic field. (Note that σ̂ = (σx, σy, σz) ≡ x̂σx + ŷσy + ẑσz is a convenient shorthand for a vector
whose components are operators, in this case 2×2 Pauli matrices, similarly to how the momentum p̂ = (p̂x, p̂y, p̂z) ≡
x̂p̂x + ŷp̂y + ẑp̂z is vector composed of differentiation operators.)

1. Diagonalize this Hamiltonian for an arbitrary magnetic field B = B0n̂, where n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)
is a unit vector whose direction is oriented along an arbitrary direction.

2. Write down the Ehrenfest equation for the spin expectation value
〈
Ŝ(t)

〉
.

3. If B = B0ẑ points along z, and
〈
Ŝ(t = 0)

〉
= ℏ

2 x̂, find
〈
Ŝ(t)

〉
by solving the Ehrenfest equation.

4. Now assume that B = B0ẑ and that the wavefunction initially equals |Ψ(t = 0)⟩ = 1√
2
(|↑⟩ + |↓⟩). Calculate

|Ψ(t)⟩ by solving the Schrödinger equations and then calculate
〈
Ψ(t)

∣∣∣Ŝ∣∣∣Ψ(t)
〉
. Compare with the previous

part of this problem.

Solution 2

1. The Hamiltonian equals

Ĥ =
γℏB0

2
n̂ · σ̂ =

γℏB0

2

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
,

and it is diagonalized in the usual way to obtain:

|n̂,+⟩ =
(

cos θ
2

sin θ
2e

iϕ

)
, E+ = +

γℏB0

2
,

|n̂,−⟩ =
(

sin θ
2

− cos θ
2e

iϕ

)
, E− = −γℏB0

2
.
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2. Since [Ŝi, Ŝj ] = iℏ
∑

k ϵijkŜk, it follows that

iℏ∂t
〈
Ŝi

〉
=

〈
[Ŝi, Ĥ]

〉
=

∑
j

γBj

〈
[Ŝi, Ŝj ]

〉
=

∑
jk

γBj iℏϵijk
〈
Ŝk

〉
,

∂t

〈
Ŝi

〉
= γ

∑
jk

ϵijkBj

〈
Ŝk

〉
,

or more compactly in vector notation

∂t

〈
Ŝ
〉
= γB ×

〈
Ŝ
〉
.

3. The Ehrenfest equation we wrote down is nothing but the equation for the precession of a vector rotating with
the angular frequency ω = γB, known as the Larmor frequency. The solution to this problem is known from
classical mechanics. In the particular case of the problem:〈

Ŝ(t)
〉
=

ℏ
2
(x̂ cosΩt+ ŷ sinΩt),

where Ω = γB0.

4. Since we have diagonalized the Hamiltonian, we know that the general solution of the Schrödinger equation is

|Ψ(t)⟩ = c+e
−iE+t/ℏ |n̂,+⟩+ c−e

−iE−t/ℏ |n̂,−⟩ .

For B = B0ẑ and |Ψ(t = 0)⟩ = 1√
2
(|↑⟩+ |↓⟩), this means

|Ψ(t)⟩ = 1√
2
e−iΩt/2 |↑⟩+ 1√

2
eiΩt/2 |↓⟩

where Ω = γB0. Hence〈
Ψ(t)

∣∣∣Ŝx

∣∣∣Ψ(t)
〉
=

1√
2

(
eiΩt/2 e−iΩt/2

) ℏ
2

(
0 1
1 0

)
1√
2

(
e−iΩt/2

eiΩt/2

)
=

ℏ
2
cosΩt,〈

Ψ(t)
∣∣∣Ŝy

∣∣∣Ψ(t)
〉
=

1√
2

(
eiΩt/2 e−iΩt/2

) ℏ
2

(
0 −i
i 0

)
1√
2

(
e−iΩt/2

eiΩt/2

)
=

ℏ
2
sinΩt,〈

Ψ(t)
∣∣∣Ŝz

∣∣∣Ψ(t)
〉
=

1√
2

(
eiΩt/2 e−iΩt/2

) ℏ
2

(
1 0
0 −1

)
1√
2

(
e−iΩt/2

eiΩt/2

)
= 0,

which agrees with what we found by solving the Ehrenfest equation.

Problem 3 Singlet and triplet states

Consider two spin- 12 particles.
Formally, the total Hilbert space describing two particles is given by the tensor product of the Hilbert spaces

describing the particles individually. In this case, the individual Hilbert spaces are C2 and C2, and their tensor
product is C2 ⊗ C2 = C2×2 = C4. The tensor product of two 2-component vectors

v =

(
v1
v2

)
, u =

(
u1

u2

)
(5)

is the 4-component vector

v ⊗ u =


v1u1

v1u2

v2u1

v2u2

 . (6)
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The tensor product of two 2× 2 matrices

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
(7)

is defined as the 4× 4 matrix

A⊗B =


A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22

, (8)

where the horizontal and vertical lines were added for readability only. Notice how the tensor product is linear in
both of its arguments and how it is not commutative, A⊗B ̸= B ⊗A.

If the spin operator of an individual particle is given by Ŝ = ℏ
2 σ̂, where σ̂ = (σx, σy, σz) are Pauli matrices, then

the spin operators of the first and second particles are Ŝ1 = ℏ
2 σ̂⊗1 and Ŝ2 = ℏ

21⊗σ̂ in the basis {|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩}
of the total Hilbert space; here 1 is the 2× 2 identity matrix.

1. Write down the matrices for Ŝ1,x and Ŝ2,y in the {|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩} basis.

2. Show that [Ŝ1,i, Ŝ2,j ] = 0. (Hint: do this abstractly using (A⊗B)(C ⊗D) = (AB)⊗ (CD).)

3. Introduce Σ̂ = Ŝ1 + Ŝ2. Calculate [Σ̂i, Σ̂j ] and find the matrices for Σ̂2 and Ŝ1 · Ŝ2.

4. Diagonalize the total spin Σ̂2 simultaneously with the total spin along z Σ̂z. Make sure that the phases of the
different eigenvectors are properly related through raising and lower operations Σ̂±. What spin values do you
find?

Solution 3

1. They are

Ŝ1,x =
ℏ
2


1

1
1

1

 , Ŝ2,y =
ℏ
2


−i

i
−i

i

 .

2. This follows from

[Ŝ1,i, Ŝ2,j ] = (Ŝi ⊗ 1)(1⊗ Ŝj)− (1⊗ Ŝj)(Ŝi ⊗ 1)

= (Ŝi1)⊗ (1Ŝj)− (1Ŝi)⊗ (Ŝj1)

= Ŝi ⊗ Ŝj − Ŝi ⊗ Ŝj = 0.

3. We have:

[Σ̂i, Σ̂j ] = [Ŝ1,i + Ŝ2,i, Ŝ1,j + Ŝ2,j ] = [Ŝ1,i, Ŝ1,j ] + [Ŝ2,i, Ŝ2,j ]

= iℏ
∑
k

(Ŝ1,k + Ŝ2,k) = iℏ
∑
k

Σ̂k.

Moreover

Σ̂2 = (Ŝ1 + Ŝ2)
2 = Ŝ2

1 + Ŝ2
2 + Ŝ1 · Ŝ2 + Ŝ2 · Ŝ1

=
ℏ2

4

∑
i

σ2
i ⊗ 1 +

ℏ2

4

∑
i

σ2
i ⊗ 1 + 2

ℏ2

4

∑
i

σi ⊗ σi

=
3ℏ2

2
1⊗ 1 +

ℏ2

2

∑
i

σi ⊗ σi,

Ŝ1 · Ŝ2 =
ℏ2

4

∑
i

σi ⊗ σi.

5



where

∑
i

σi ⊗ σi =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

+


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

+


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1



=


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 .

Hence

Σ̂2 = ℏ2


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 ,

Ŝ1 · Ŝ2 =
ℏ2

4


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 .

4. Since

Ŝz = ℏ


1

0
0
−1

 ,

the singlet state is

|s = 0,m = 0⟩ = 1√
2


0
1
−1
0

 =
|↑↓⟩ − |↓↑⟩√

2
,

and the triplet states are

|s = 1,m = 1⟩ =


1
0
0
0

 = |↑↑⟩ ,

|s = 1,m = 0⟩ = 1√
2


0
1
1
0

 =
|↑↓⟩+ |↓↑⟩√

2
,

|s = 1,m = −1⟩ =


0
0
0
1

 = |↓↓⟩ .

Note that Σ̂− |s = 1,m = 1⟩ = ℏ
√
2 |s = 1,m = 0⟩, where

Σ̂− = ℏ


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

 .

The possible spins are s = 0 and s = 1, as follows from Σ̂2 |s,m⟩ = ℏ2s(s+ 1) |s,m⟩.
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