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⋆ Problem 1 ⋆ Fun with orbital angular momentum

The orbital angular momentum operator is given by L̂ = (L̂x, L̂y, L̂z) = r̂× p̂. In spherical coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ with r =
√
x2 + y2 + z2 (1)

and the gradient is given by

∇r,θ,ϕ = êr
∂

∂r
+ êθ

1

r

∂

∂θ
+ êθ

1

r sin θ

∂

∂ϕ
(2)

with

êr = sin θ cosϕ êx + sin θ sinϕ êy + cos θ ê, (3)

êθ = cos θ cosϕ êx + cos θ sinϕ êy − sin θ êz, (4)

êϕ = − sinϕ êx + cosϕ êy (5)

1. Show that the angular momentum operator in spherical coordinates has the following form:

L̂x =
ℏ
i

(
− sinϕ

∂

∂θ
− cosϕ

tan θ

∂

∂ϕ

)
, L̂y =

ℏ
i

(
cosϕ

∂

∂θ
− sinϕ

tan θ

∂

∂ϕ

)
, L̂z =

ℏ
i

∂

∂ϕ
(6)

2. Suppose a particle described by the following wave function

ψ(r) = (x+ y + 2z)Ne−r2/α2

(7)

where N and α both are real numbers and N is a normalization constant.

By applying

L̂2 = −ℏ2
( ∂2
∂θ2

+
1

sin2 θ

∂2

∂ϕ2
+

1

tan θ

∂

∂θ

)
(8)

to the state ψ(r), show that ψ(r) is an eigenstate of the L̂2. i.e.

L̂2ψ(r) = l(l + 1)ℏ2ψ(r) (9)

and determine the value of l.

3. Now express the wave function Eq. (7) by a superposition of suitable spherical harmonics. Which values can
be measured for the z-component L̂z of the orbital angular momentum? With what probability are these
measured?
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Solution 1

1. We now show that the angular momentum operator in spherical coordinates has the form:

L̂x =
ℏ
i

(
− sinϕ

∂

∂θ
− cosϕ

tan θ

∂

∂ϕ

)
, L̂y =

ℏ
i

(
cosϕ

∂

∂θ
− sinϕ

tan θ

∂

∂ϕ

)
, L̂z =

ℏ
i

∂

∂ϕ
(10)

Using Eq. (2) and the fact that

êr × êθ = êϕ, êθ × êϕ = êr, êϕ × êr = êθ, (11)

the angular momentum operator is now given by

i

ℏ
L̂ = r̂× p̂ = r̂×∇ = rêr ×

(
êr∂r + êθ

1

r
∂θ + êϕ

1

r sin θ
∂ϕ

)
= êϕ∂θ − êθ

1

sin θ
∂ϕ

=
(
− sinϕ− cosϕ

tan θ
∂ϕ

)
êx +

(
cosϕ∂θ −

sinϕ

tan θ
∂ϕ

)
êy + ∂ϕêz (12)

2. First we write the given wave function in spherical coordinates

ψ(r, θ, ϕ) = (r sin θ cosϕ+ r sin θ sinϕ+ 2r cos θ)Ne−r2/α2

= (sin θ cosϕ+ sin θ sinϕ+ 2 cos θ)f(r) (13)

where the f(r) = rNe−r2/α2

Now we apply L̂2 to the wave function

L̂2ψ(r, θ, ϕ) = −ℏ2
( ∂2
∂θ2

+
1

sin2 θ

∂2

∂ϕ2
+

1

tan θ

∂

∂θ

)
(sin θ cosϕ+ sin θ sinϕ+ 2 cos θ)f(r) (14)

∂2

∂θ2
(sin θ cosϕ+ sin θ sinϕ+ 2 cos θ) = −(sin θ cosϕ+ sin θ sinϕ+ 2 cos θ), (15)

1

sin2 θ

∂2

∂ϕ2
(sin θ cosϕ+ sin θ sinϕ+ 2 cos θ) = − 1

sin θ
(cosϕ+ sinϕ), (16)

1

tan θ

∂

∂θ
(sin θ cosϕ+ sin θ sinϕ+ 2 cos θ) =

cos2 θ

sin θ
(cosϕ+ sinϕ)− 2 cos θ (17)

As a result,

L̂2ψ(r, θ, ϕ) = 2ℏ2(sin θ cosϕ+ sin θ sinϕ+ 2 cos θ)f(r) = 2ℏψ(r, θ, ϕ) (18)

Thus ψ(r, θ, ϕ) is an eigenfunction with the eigenvalue 2ℏ = l(l + 1)ℏ, from which l = 1 can be read directly.

3. The spherical harmonics are complete and orthogonal. The coefficients could therefore be found by projecting
onto these states. However, since we already know that l = 1, the state can only be expressed by a superposition
of the functions Y m

l=1(θ, ϕ). We therefore only need the three spherical harmonics

Y 0
1 (θ, ϕ) =

√
3

4π
cos θ, Y 1

1 (θ, ϕ) = −
√

3

8π
sin θeiϕ, Y −1

1 (θ, ϕ) =

√
3

8π
sin θe−iϕ (19)

and find the coefficients by comparing with Eq. (13).

ψ(r, θ, ϕ) =
(
−
√

2π

3
(Y 1

1 (θ, ϕ)− Y −1
1 (θ, ϕ)) + i

√
2π

3
(Y 1

1 (θ, ϕ) + Y −1
1 (θ, ϕ)) + 2

√
4π

3
Y 0
1 (θ, ϕ)

)
f(r)

=
(
c1Y

1
1 (θ, ϕ) + c0Y

0
1 (θ, ϕ) + c−1Y

−1
1 (θ, ϕ)

)
f(r) (20)
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where

c1 = −
√

2π

3
(1− i), c0 = 4

√
π

3
, c−1 =

√
3π

3
(1 + i). (21)

In a measurement of L̂z, the values ℏm with m = −1, 0, 1 can be found. We have not normalized the wave
function, i.e. f(r) is only known up to a constant factor N . However, when calculating the measurement
probabilities of the various angular momentum values, f(r) is eliminated

P (m = −1) =
|c−1|2

|c−1|2 + |c0|2 + |c1|2
=

1

6
(22)

P (m = 0) =
|c0|2

|c−1|2 + |c0|2 + |c1|2
=

2

3
(23)

P (m = 1) =
|c1|2

|c−1|2 + |c0|2 + |c1|2
=

1

6
(24)

⋆ Problem 2 ⋆ Particles in a magnetic field - Landau levels

Consider a particle of charge q in a homogeneous magnetic field B = Bêz. A clever choice of the vector potential A
in this case is given by the Landau gauge with A = −Byêx. Assuming the particle is restricted to the x − y plane
(as in a two-dimensional electron gas), the Hamiltonian is

Ĥ =
1

2m

(
p̂− q

c
A
)2

=
1

2m

((
p̂x +

q

c
Bŷ
)2

+ p̂2y

)
(25)

1. Show [Ĥ, p̂x] = 0, and use the knowledge of the eigenfunctions of p̂x to make a separation of variable approach
for the wave function ψ(x, y).

2. Show that the Schrödinger equation can be brought to the form of a one-dimensional harmonic oscillator and
find the characteristic frequency ωc of the eigenenergies En = ℏωc(n+ 1

2 ) where n ≥ 0.

3. Now specify the corresponding eigenfunctions ψn,px
(x, y). Use the magnetic length scale lB =

√
ℏc
qB in express-

ing the ψn,px
(x, y).

Apparently the eigenfunctions depend on the quantum number px, but the energies do not. Thus the Landau
energy levels are strongly degenerate. This degeneracy plays an important role for physical applications (e.g., de
Haas-van Alphen effect). We now want to determine these degeneracies for a sample with an area A = LxLy.

4 Determine the quantization of p̂x, assuming periodic boundary conditions ψ(x+Lx, y) = ψ(x, y). Also find the
distance between adjacent values of px,nx . i.e. ∆px = px,nx+1 − px,nx.
(Hint: To do this, perform a discrete Fourier transformation ϕ(x) = 1√

Lx

∑
px
e−ipxx/ℏϕpx .)

5 A restriction on the permitted values of px can be found by the condition that the position of the potential
minimum y0 = cpx

qB must lie within the dimensions of the sample, i.e. 0 < y0 < Ly. From this, determine the

Ipx which is length of the interval of permitted px values, and the number N =
Ipx
∆px

(= degree of degeneracy

of each Landau level).

Solution 2

1. We can easily show that [Ĥ, p̂x] = 0 from the fact that [ŷ, p̂x] = 0. So we can make an Ansatz: ψ(x, y) =
eipxx/ℏχ(y).
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2. Inserting the ansatz into Schrödinger equation, we immediately get[ p̂2y
2m

+
1

2
m
(qB
mc

)2(
y +

cpx
qB

)2]
χ(y) = Eχ(y) (26)

Let us now introduce the characteristic frequency ωc =
qB
mc , and the displacement y0 = cpx

qB and also a variable
shift by ỹ = y + y0, p̂y = p̂ỹ. Then we get[ p̂2ỹ

2m
+

1

2
mω2

c ỹ
2
]
χ(ỹ − y0) = Eχ(ỹ − y0) (27)

Here we have a harmonic oscillator with the energies En = ℏωc(n+
1
2 ), and the eigenfunctions of the harmonic

oscillator

χ(ỹ − y0) = χ̃(ỹ) =
(mωc

πℏ

)1/4 1√
2nn!

Hn

(√mωc

ℏ
ỹ
)
e−

1
2

mωc
ℏ ỹ2

(28)

3. It is χ(y) = χ̃(y + y0). With the magnetic length scale lB =
√

ℏ
mωc

=
√

ℏc
qB , we can write the eigenfunctions

as follows

ψn,px
(x, y) = eipxx/ℏχ(y) = eipxx/ℏχ̃(y + y0)

= eipxx/ℏ 1

π1/4
√
lB
√
2nn!

Hn

(y + y0
lB

)
e
− (y+y0)2

2l2
B . (29)

4. To determine the quantization under periodic boundary conditions we perform the Fourier transformation

ψ(x, y) =
1√
Lx

∑
px

e−ipxx/ℏψpx
(y) = ψ(x+ Lx, y) =

1√
Lx

∑
px

e−ipx(x+Lx)/ℏψpx
(y) (30)

⇒ pxLx = 2πℏnx (nx = 0,±1,±2, · · ·) (31)

∴ px =
2πℏ
Lx

nx. (32)

Therefore ∆px = px,nx+1 − px,nx = 2πℏ
Lx

.

5. Now we require that the position of the potential minimum y0 lies within the sample i.e. 0 < y0 < Ly and thus

obtain the restriction for px, 0 < px <
qBLy

c . Then the length of the interval of the allowed px is Ipx =
qBLy

c .
As a result, the number of degenerated states is given by

N =
Ipx

∆px
=
qBA

2πℏc
(33)

Problem 3 Detection of directional quantization in the magnetic field and spin preces-
sion

In a groundbreaking experiment done by Stern and Gerlach, they were able to demonstrate the directional quanti-
zation of the angular momentum. They used a setup with a strongly in-homogeneous magnetic field and observed
that a silver atom beam is split into two beams. This setup, also called Stern-Gerlach apparatus shown in Fig. 1,
can also be used to investigate spin precession in more detail.

Here we shall consider two Stern-Gerlach apparatuses arranged one behind the other. The first has an inhomo-
geneous magnetic field along the z-direction which splits the electron beam into | ↑⟩ and | ↓⟩ states. The second
apparatus has an inhomogeneous magnetic field along the x-direction which also splits the electron beam, this time
into spins along ±x̂. A homogeneous magnetic field By is applied between the apparatuses in the y-direction and
leads to a precision of the spin during the flight time T between the two Stern-Gerlach apparatuses. Two points are
now observed on a detector screen behind the second apparatus.
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Figure 1: Stern-Gerlach apparatus

1. Sketch the experimental setup including the beam path.

2. The intensities of the two observed points depend on the magnetic field By and the time of flight T . Calculate
this dependence for the two possible prepared initial states (| ↑⟩ and | ↓⟩).

Solution 3

1. Sketch

2. According to the first Stern-Gerlach apparatus, the state of the particles is either | ↑⟩ (for the upper beam, for
example) and | ↓⟩ (for the lower beam).

During the flight time from one device to the other, the states evolve due to the external magnetic field applied
in the y-direction

|ψ↑(t)⟩ =
e−iωt/2

2
(| ↑⟩+ i| ↓⟩) + eiωt/2

2
(| ↑⟩ − i| ↓⟩) = cos

ωt

2
| ↑⟩ − sin

ωt

2
| ↓⟩, (34)

|ψ↓(t)⟩ = cos
ωt

2
| ↓⟩+ sin

ωt

2
| ↑⟩, (35)

(36)

with ω = µBB
ℏ . The second Stern-Gerlach apparatus splits the states again into the states

| ↑⟩x =
1√
2
(| ↑⟩+ | ↓⟩), (37)

| ↓⟩x =
1√
2
(| ↑⟩ − | ↓⟩). (38)
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Accordingly, the conditional probabilities to measure these after the flight time T are given by

P (↑x, ↑) =
∣∣∣∣ 1√

2
(⟨↑ |+ ⟨↓ |)

(
cos

ωT

2
| ↑⟩ − sin

ωT

2
| ↓⟩
)∣∣∣∣2 =

1

2
(1− sinωT ), (39)

P (↓x, ↑) =
1

2
(1 + sinωT ), (40)

P (↑x, ↓) =
1

2
(1 + sinωT ), (41)

P (↓x, ↓) =
1

2
(1− sinωT ). (42)

The intensities of the points on the detector screen are directly proportional to these probabilities.
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