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* Problem 1 x Entanglement entropy of the 2-site Quantum Ising model in a transverse
field

Consider the Hamiltonian for two spin-1/2 particles:
H = —J6%6% — hé® — hés (J,h > 0) (1)

where 6% and 6% are Pauli matrices.
A convenient orthonormal basis of states which spans the full Hilbert space for this model consists of a direct
product of eigenstates of 6% denoted, for example,

[o1) =111 @[ D2, [¢2) =111 @[ D2, [93) = [T @ D2, [¢a) = [L1 @[ )2 (2)

where 67 5| T)12 = | 1)1.2 and 67| })12 = —[ })1,2. Note: you may use Wolfram Mathematica for this problem.

1. Find the matrix elements for this Hamiltonian, hes = <¢a|ﬁ\¢5>7 with o, 8 =1,2,3, 4.

2. Find the eigenstate and eigenvalue of the matrix h with the lowest eigenvalue. If one denotes this (normalized)
eigenstate as |¥), you should be now able to express it as |¥) = Eizl Ayl|po) with known values of the
coefficients A,.

3. We are interested in the entanglement entropy of the state |¥) for a bipartition that divides sites 1 and 2. First
consider a density matrix of the full system simply given by |¥),

p=0)(¥ 3)

To calculate the entanglement entropy between the 2-sites we first need to find the reduced density matrix,
which we denote by p1, for this bipartition. Therefore, calculate

p1 =Tra(p) (4)

where Tro denotes a trace over the Hilbert space of site 2, that is over the 2-states | 1), | {)2. This gives the
reduced density matrix p; for the subsystem consisting of site 1.

4. Re-express the density-matrix operator, p; as a 2 x 2 matrix in the basis | 1)1, | )1, with matrix elements, for
example, (11 |p1] 1)1 and so on.



5. Diagonalize your 2x 2 matrix representation of p; to obtain its eigenvalues A;.

6. The von Neumann (bi-partite entanglement) entropy is defined as,

S}’N =-Trip1Ilnp] = Z)\ In \;

Calculate S¥V as a function of h/J and make a sketch of S¥V versus h/J.

7. What is the value of 57~ as 2

Solution 1

1. Using the fact that

I =14, e*lh =11, &[T =11 &) =—)

H|g1) = —J|é1) — h(|és) + |64)),
H|bz) = =J|62) = h(|¢s) + |éa)),
Hlps) = Jlos) — hl|¢2) + |é1)),
H|pa) = J|6a) = h(|¢2) + |é1))
Therefore in a matrix representation
-J 0 —h —-h
i 0 —-J —-h —h

—-h —-h J 0
—h —-h 0 J

2. The eivenvalues and corresponding eigenstates are as follows:

Ei=—A, |By) = 2(A—3)2+8h2(2h 2 A—J A-J)"
By =—J, |E2>=i2(—1 10 0)"
By =, \E3>:%(0 0 -1 1),
Ey=A, |Ey) = ! (-2 —2n J+A J+A)

2(A+ J)% 4 8h?
where A = /J? + 4h?
The ground state is |F1) and

1

9 = s (2001000 + [62)) + (A = 1)) + o).

3. From Eq. (16),

1 1
=IO = s e

+2h(A = T)(|¢3) + [¢a)) ({d1] + (@2]) + (A = J)*(|¢3) + [a)) ({d3] + <¢4I))

— 00?7 As % — 07 Explain the physics behind these two limits.

(4h2(|¢1> +102)) (P1] + (1)) + 2h(A = J)(|61) + [62)) ({D3] + (ba])

(12)
(13)
(14)

(15)

(16)

(17)



Using
Tra(|¢1)(d2) = Tra(|d1)(ds]) = Tr2(|¢s)(¢4]) = Tra(|d2)(dal) =0,

Tra([p1){(P1]) = [ D1 (T [1, Tra(l)(@al) = [ 1)1 [1, Tra(|ds)(@s]) = | T
Tra([p2)(p2]) = [ D1 [1, Tra(l2)(@sl) = [ D1 (T 1, Tra(|da)(da]) = | L

and the fact that (Tr2(|¢:)(¢;]))T = Tra(|¢;){(¢:]), we can obtain

T’I“g( )

it
2 (A= J)2+4h?

4. In a matrix representation,

Trale) = 1 ( AR24 (A= J)2  Ah(A-J)

1
2 (A —J)2 + 4h?

5. The eigenvalues and eigenstates of Tra(p) are

1 (2h—J+4A)? vy L1

1_§4h2+(J—A)2’| 1>_2<1>’
A, o L @h+ Ay A = 1( 1 )
YT o4z (J-A2 T

6. Using the eigenvalues, the von-Neumann entropy is given by

(402 4 (A = 22) (1 D2 11+ 1020 1) +40(A = D (Il L+ Dt

AR(A = J) 4R 4 (A — J)?

1 (2h+J—-A)?

oN Loy 1 (@2h—J+A) 1 (2h—J+A)2\ 1 (2h+J—A)
ST = Z)\Zln)\_ ln( ) R PN

2402 + (J — A)2  \24h%2 4+ (J — A)?
(22 — 14+ A)?

_ - 2z +1—A)?
=TT (_Ar )1|2 1+ Al - 12 T (1_Ap

+1In2 +In(4z? + (1 — A)?)

where z = h/J and A = /1 + 4a2.

2 4 6 8 10h/J

Figure 1: SYV as a function of h/.J.

7. (i) & — 0 limit

Alx) = 1= S{’N — —21n2x+1n(2m2)—|—ln2 =1In2

In|2z+1— A

+(J—A)2)

(22)

(23)



In this limit, the Hamiltonian can be approximated into
H~ —J6%6% (24)

and the corresponding ground state is singlet state which is maximally entangled state. Therefore the
entanglement entropy is given by In 2.

(i) 2 — oo limit
A(z) = 22 = SN = 2Indz + In82% +In2 =0 (25)
In this limit, the Hamiltonian can be approximated into
H =~ —h(6% + 63%) (26)

and the corresponding ground state is product state(| 1)1 ® | })2). As a result, the entanglement entropy
is zero.

* Problem 2 x Operator in Heisenberg picture

Consider a harmonic oscillator with the Hamiltonian
At 1
thu)(a a+§) (27)

Where a' and @ are the creation and annihilation operators respectively. In the Heisenberg picture, in contrast to
the Schrodinger picture, the states are time-independent, but the operators for them are time-dependent.

1. Use the Heisenberg equation of motion to calculate the time evolution of the operators a(t) and a' ().
2. Calculate the time evolution of the operators Z(t) and p(¢).

3. Use the results of the previous parts of the task to calculate the commutators [£(¢1), #(¢2)] and [Z(t1), p(t2)] of
the now time-dependent operators.

4. At time t = 0, the system is in the ground state [¢)(0)) = |0). Calculate the correlation function (Z(0)&(t)).

Solution 2

The Heisenberg equation of motion for an operator A(t) is

dA i o .
o = 7 A+ ot (28)
where the H is
2 252
N
A=+ T —hw(aa—i—2). (29)
1. The equations of motion for a(t) and af(t) are given by
da ) A D N N PN ~ —iwt
e ﬁ[a,H] = iwld,a'a] = —iwa = a(t) = e *“"a(0), (30)
T A A )
ddit = %[aT, H] = iwlat,ata) = iwa = a (t) = e“al(0), (31)



2. #(t) and p(t) are obtained from the above result:

B(t) = %(a*(t) +a(t)) = z(0) coswt + % sin wt, (33)
p(t) =1 m;uh (a(t) — a(t)) = p(0) cos wt — mwx(0) sin wt. (34)

The operators satisfy the classical equations of motion.

The same results can be obtained by solving the system of equations

di i - R0}

a =t EOI= T (35)
B 18 p(0) = —mea () (36)

3. Using the above results, we can obtain following values of commutators [Z(t1), Z(t2)] and [Z(t1), P(t2)]:

[Z(t1), Z(t2)] = miw coswty sin wio[#(0), p(0)] + miw sin wty cos wia[p(0), £(0)]

= T;—Z sinw(ts — t1), (37)
[Z(t1), p(t2)] = coswty coswia[#(0), p(0)] — sinwty sinwio[H(0), £(0)]
= thcosw(ta —t1) (38)

4. The system is in the ground state |)(0)) = |0) at ¢t = 0. To calculate the correlation function we switch back
to the Heisenberg picture where £(0) = .

(#(0)a(t)) = (0fze ™/ Mpe™1M0) = ———(0|(a’ + a)e' ™" (at + a)|0)e ™"/
mw
_ h ihHt/h —iwt/2 __ h wt
= 2mw<1|e [1)e =g e (39)

Problem 3 Spin in a time-dependent magnetic field

In the lecture, the Larmor precession of the electron spin in a static magnetic field in the z-direction B = BZ was
discussed. In the following, the behavior of the spin—% particle will be investigated when a periodic magnetic field is
additionally applied in the xy-plane.

Consider an electron spin in a time-dependent external magnetic field:

B(t) = Bj coswté, + By sinwté, + Byé, (40)
1. Write the Hamiltonian of the system explicitly in matrix form.

2. Show that the problem can be transformed into the problem of an electron in a static magnetic field B =
B.é, + B.é, by using a sutiable transformation:

Pi(t) = a(t)yr(t), $u(t) = b(t)Py (1) (41)
3. Use the time evolution operator U (t,0) to calculate the time evolution of the state |4(t)) of the electron spin
in the effective static magnetic field B.

4. At time t = 0 the particle is in the state |(0)) = | 1). Calculate the probability P, (¢) of finding the spin at
time ¢ in the state | J). For which frequency w of the external field and after which time does the probability
become maximum?



Solution 3

1. The Hamiltonian in the matrix representation is given by

- 0 1 . 0 —i 1 0
H=pupo-B=uph [coswt( 10 ) +Slnwt< i 0 )} + upBy ( 0 —1 ) (42)
If we define the frequencies w = 2up B it can be written compactly as
& h wo — wpewt
=g (o e, (43)
2. From the Schrédinger equation,
L0 [ h W wre Wt P
h— Ty = 0 L U 44
(3 ot ( IIZ)J, ) 2 ( wlezwt —wo /(/)~L ( )
we obtain the equations of motion for the components ¥4(t) and 9, (¢)
.0
S Sy Py, (45)
aw$ _ w1 iwt
mfgewfgm (46)
Now let us consider the following transformation:
Ui (t) = e PP (t), (1) = P () (47)
Then the equations of the motions in terms of the ’(ZJT’ | are given by
(91/) w— w
BtT = - 01/)¢+ 1%7 (48)
O, wy W — wo
Yo T 7¢T T Yy (49)

We have now transformed the problem to a system with the effective Hamiltonian

(e ) =

2 w1 w — wo

This corresponds to an electron spin in the static magnetic field B = (By, 0, 2%;) with Aw = w — wy.

The transformation (47) can also be written in matrix form as follows:

[9) = e 172 [)) (51)

It is nothing but a time-dependent rotation in spin space around the z-axis. We have switched to a rotating
reference system and follow the rotation of the magnetic field By (t).

3. To determine the time evolution of the state |¢(¢)), we apply the time evolution operator of H.

=

T(t,t) = e~ k=) (52)
(1)) = e~ # A [43(0)) = emilron/2=Bwe= /2t ()
Using the fact that

e = cos @ +io - fisinf (53)

9) = (cos $ ~ 10— B sin 5 ) 900 (54)
where Q = /w} + Aw?.



4. The amplitude for a spin flip from [(0)) = | 1) to |[¢(¢)) = | ]) is

uwmuemwwm>eMWqu?%wM:Awmm?)w

, Ot
= —jeit/ 2% sin (55)

)

where we used [(0)) = [1(0)) = | 1). We obtain the probability

2
w
PO = (L [0 = 2251~ con ). (56)
The probability Py (t) reaches the maximum value
wf | wf

0?2 (w—wp)?+w?

after a m-pulse, t = §.

For a resonant magnetic field w = wy, this has the largest value with P (7/) = 1, and the spin then changes
with certainty over time.



