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⋆ Problem 1 ⋆ Anharmonic oscillator

Consider an anharmonic oscillator of the form

H =
p̂2

2m
+
mω2

2
x̂2 + αx̂4 (1)

where the third term can be considered as a perturbation αx40 ≪ ℏω. Here x0 =
√

ℏ
mω is the characteristic length

scale of the simple harmonic oscillator. For α = 0, the problem is exactly solvable, where the energies of the states

{|n⟩} for n ∈ N0 are given by E
(0)
n = ℏω(n+ 1

2 ). It was shown that ascending and descending operators

â =

√
mω

2ℏ

[
x̂+

i

mω
p̂

]
, (2)

â† =

√
mω

2ℏ

[
x̂− i

mω
p̂

]
(3)

whose effect on states is given by

â|n⟩ =
√
n|n− 1⟩, (4)

â†|n⟩ =
√
n+ 1|n+ 1⟩. (5)

The first correction to the state energy is

E(1)
n = α⟨n|x̂4|n⟩. (6)

1. Calculate the matrix element ⟨n|x̂2|n′⟩. Show that n′ = n, n± 2 must hold to have non-zero value.

2. Compute E
(1)
n to first order in α. (Hint: The identity operator is given by 1̂ =

∑
n |n⟩⟨n|.)

3. Derive an expression for n = nmax for which the perturbation theory is no longer valid. One possible criterion
is

E(0)
nmax

≈ E(1)
nmax

(7)
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Solution 1

1. First, x̂ is expressed by â and â†

x̂ =

√
ℏ

2mω
(â† + â) (8)

This follows

x̂2 =
x20
2
(â†â† + â†â+ ââ† + ââ) (9)

The ascending and descending operators increase or decrease the index l.

â†â†|l⟩ =
√
l + 1

√
l + 2|l + 2⟩, (10)

â†â|l⟩ = l|l⟩, (11)

ââ†|l⟩ = (l + 1)|l⟩, (12)

ââ|l⟩ =
√
l
√
l − 1|l − 2⟩ (13)

In order for the matrix elements to be non-zero, the following must apply: ⟨n|l ± (0, 2)⟩ = δn,(l±(0,2)). This
means that only states with l = n, n± 2 contribute.

2. The expected value can be written by inserting 1̂ =
∑

l |l⟩⟨l| as

α⟨n|x̂4|n⟩ = α
∑
l

⟨n|x̂2|l⟩⟨l|x̂2|n⟩ = α
∑
l

|⟨n|x̂2|l⟩|2

=
αx40
4

∑
l

(
(l + 1)(l + 2)|⟨n|l + 2⟩|2 + (2l + 1)2|⟨n|l⟩|2 + l(l − 1)|⟨n|l − 2⟩|2

)
=
αx40
4

(3 + 6n+ 6n2) (14)

This results in

E(1)
n =

αx40
4

(3 + 6n+ 6n2). (15)

3. It can be seen that E
(1)
n grows quadratically with n, whereas E

(0)
n only grows linearly. Thus the approximation

fails for large n. One can assume that the maximum value for n is given by

E(0)
nmax

≈ E(1)
nmax

(16)

for nmax ≫ 1. Therefore

ℏωnmax ≈ 3αx40
2

n2max ⇒ nmax ≈ 2

3

ℏω
αx40

. (17)

Thus, the result of the perturbation calculation is meaningful for n≪ nmax ≈ 2
3

ℏω
αx4

0
.

⋆ Problem 2 ⋆ Schmidt decomposition and reduced density matrices

Consider a bipartite quantum system built from a direct product Hilbert space of the two parts, H = HA ⊗ HB .
Let |ai⟩A with i = 1, 2, · · ·n label a complete orthonormal basis of states in Hilbert space A, and likewise for Hilbert
space B: |bj⟩B , with j = 1, 2, · · ·N ≥ n. The most general quantum state in the full Hilbert space can be expressed
as,

|Φ⟩ =
n∑

n=1

N∑
j=1

cij |ai⟩A ⊗ |bj⟩B , (18)
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with complex coefficients, cij .
A theorem proven on the wikipedia page, https://en.wikipedia.org/wiki/Schmidt_decomposition, states

that there always exist orthonormal sets, |ψi⟩A, |ϕj⟩B with i, j = 1, 2, · · ·n such that the general state |Φ⟩ can be
re-expressed in a Schmidt-decomposed form:

|Φ⟩ =
n∑
i

vi|ψi⟩A ⊗ |ϕi⟩B (19)

with the normalization condition,
∑n

i=1 |vi|2 = 1.

1. Using this Schmidt form, obtain expressions for the reduced density matrices,

ρ̂A = TrB |Φ⟩⟨Φ|, ρ̂B = TrA|Φ⟩⟨Φ| (20)

Demonstrate that the reduced density matrices are Hermitian with eigenvalues λi = |vi|2, i = 1, 2, · · ·n, and
associated eigenvectors, |ψi⟩A, |ϕi⟩B . Thus, the Schmidt-decomposition for any state |Φ⟩ can be obtained by
computing and then diagonalizing the reduced density matrices.

2. Now consider, as an example, two spin- 12 particles, labelled A and B, in a (normalized) pure state,

|Φ⟩ = 1√
2
| ↓⟩A ⊗ | ↓⟩B +

1

2
| ↑⟩A ⊗ (| ↑⟩B + | ↓⟩B). (21)

Obtain the Schmidt-decomposition of this state by computing and diagonalizing the two reduced density
matrices and show that the expression of |Φ⟩ obtained from Eq. (19) is same to the Eq. (21).

Solution 2

1. We can always extend the orthonormal set {|ϕj⟩B}j=1,···n to a basis of B, which is {|ϕj⟩B}j=1,···N . Now we
compute ρ̂A and ρ̂B ,

ρ̂A = TrB |Φ⟩⟨Φ| =
N∑
j=1

⟨ϕ|BΦ⟩⟨Φ|ϕj⟩B

=

N∑
j=1

n∑
i=1

|vi|2(⟨ϕj |ϕi⟩⟨ϕi|ϕj⟩)B(|ψi⟩⟨ψi|)A =

n∑
i=1

|vi|2(|ψi⟩⟨ψi)A, (22)

ρ̂B = TrA|Φ⟩⟨Φ| =
n∑

j=1

⟨ψ|AΦ⟩⟨Φ|ψj⟩A

=

n∑
j=1

n∑
i=1

|vi|2(⟨ψj |ψi⟩⟨ψi|ψj⟩)A(|ϕi⟩⟨ϕi|)B =

n∑
i=1

|vi|2(|ϕi⟩⟨ϕi)B , (23)

(24)

Since the sets {|ψj⟩A}j=1,···n and {|ϕj⟩B}j=1,···N are orthonormal, we see that they are eigenvectors of ρ̂A and
ρ̂B , with corresponding eigenvalues {|v1|2, · · · , |vn|2} and {|v1|2, · · · , |vn|2, 0, · · · , 0}, respectively.

2. Given this state, we compute the reduced density matrices to be

ρ̂A =
1

2

(
1 1√

2
1√
2

1

)
, (25)

ρ̂B =
1

4

(
1 1
1 3

)
, (26)
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ρ̂A has eigenvalues λ± = 1
4 (2 ±

√
2), with corresponding eigenvectors |±⟩A = 1√

2
(| ↑⟩ ± | ↓⟩). ρ̂B also has

eigenvalues λ± = 1
4 (2±

√
2), with corresponding eigenvectors |±⟩B = 1√

4∓2
√
2
((−1±

√
2)| ↑⟩+ | ↓⟩).

Therefore

|Φ⟩ =
∑
α=±

√
λα|α⟩A ⊗ |αB⟩ (27)

Problem 3 Stark effect

Consider a hydrogen atom in the ground state n = 1 in a homogeneous electric field E = Eêz. The field can be
considered as a perturbation. The Hamiltonian is given by

Ĥ = Ĥ0 + V̂ (28)

where Ĥ0 represents the unperturbed hydrogen atom and V̂ = −eEẑ corresponds to the perturbation term. Calculate
the energy correction of the ground state in leading order.

1. Show that the energy correction vanishes to first order E
(1)
1 = 0. Use the parity operator P̂ for this. (Hint: The

eigenstates of the hydrogen atom transform as P̂ |nlm⟩ = (−1)l|nlm⟩ and P̂ ẑP̂ † = −ẑ. In addition, P̂ †P̂ = 1̂.)

2. Show that the matrix elements ⟨100|ẑ|nml⟩ are finite only for l = 1 and m = 0. (Hint: z can be expressed
using spherical harmonics. Also use their orthogonality.)

3. Calculate the second order energy correction E
(2)
1 where only states with n = 2 need to be considered. States

with higher excitation energies n ≥ 3 can be neglected.

Solution 3

1. The energy correction in first order is

E
(1)
1 = ⟨100|V̂ |100⟩ = −eE⟨100|ẑ|100⟩ (29)

The fact that the matrix element disappears can be shown by considering the parity

⟨100|ẑ|100⟩ = ⟨100|P̂ †P̂ ẑP̂ †P̂ |100⟩ = −⟨100|ẑ|100⟩ (30)

which can only be satisfied by ⟨100|ẑ|100⟩ = 0.

2. The selection rules for calculating matrix elements for eigenstates of angular momentum operators can only be
derived via more complex considerations, such as the Wigner-Eckart theorem. Therefore, the explicit integral
must (unfortunately) be considered here.

When calculating the matrix elements, it is used that z can be represented by spherical surface functions
Yl,m(θ, ϕ)

z = r cos θ =

√
4π

3
rY1,0(θ, ϕ) =

√
4π

3
rY ∗

1,0(θ, ϕ) (31)

Thus, with ⟨rθϕ|nml⟩ = un,l(r)Yl,m(θ, ϕ), and ⟨rθϕ|100⟩ = 1√
4π
u1,0(r) the matrix elements become

⟨100|ẑ|nml⟩ =
∫ ∞

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dϕ
u∗1,0(r)√

4π

√
4π

3
rY ∗

1,0(θ, ϕ)Yl,m(θ, ϕ)un,l(r). (32)

If we consider the purely angle-dependent part, we find, using the orthogonality of the spherical harmonics,

⟨100|ẑ|nml⟩ ∼
∫ π

0

sin θdθ

∫ 2π

0

dϕY ∗
1,0(θ, ϕ)Yl,m(θ, ϕ) ∼ δ1,lδ0,m (33)

from which l = 1 and m = 0 follows.
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3. The second order energy correction is

E
(2)
1 = e2E2

∑
nml

|⟨100|ẑ|nlm⟩|2

E1 − En
≈ e2E2 |⟨100|ẑ|210⟩|2

E1 − E2
(34)

where we restrict ourselves to states with n = 2. The matrix element is

⟨100|ẑ|210⟩ =
∫ ∞

0

drr2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ
u∗1,0(r)√

4π

√
4π

3
rY ∗

1,0(θ, ϕ)Y1,0(θ, ϕ)u2,1(r)

=

∫ ∞

0

drr2
2e−r/a0

√
4πa

3/2
0

√
4π

3
r

1√
3(2a0)3/2

r

a0
e−r/(2a0)

=
28

35
a0√
2

(35)

where it was used that
∫ π

0
dθ sin θ

∫ 2π

0
dϕY ∗

1,0(θ, ϕ)Y1,0(θ, ϕ) = 1 and

u1,0(r) =
2e−r/a0

a
3/2
0

, (36)

u2,1(r) =
1√

3(2a0)3/2
r

a0
e−r/(2a0) (37)

Thus,

E
(2)
1 = e2E2 2

15

310
a20

E1 − E2
= −e2E2 2

15

310
4

3R0
a20 = −218

311
a30E

2 (38)

with Rydberg Energy R0 = ℏ2

2ma2
0
= e2

2a0
.
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