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+x Problem 1 x Anharmonic oscillator

Consider an anharmonic oscillator of the form
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where the third term can be considered as a perturbation axj < hw. Here zg = is the characteristic length
scale of the simple harmonic oscillator. For o = 0, the problem is exactly solvable, where the energies of the states

{|n)} for n € Ny are given by EY = hw(n + ). It was shown that ascending and descending operators
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whose effect on states is given by
aln) = v/njn — 1), (4)
a'ln) = Vn+1jn+1). (5)
The first correction to the state energy is
EY = a(n|i'n). (6)
1. Calculate the matrix element (n|22|n’). Show that n’ = n,n + 2 must hold to have non-zero value.
2. Compute BV to first order in a. (Hint: The identity operator is given by 1 =3 |n)(n|.)

3. Derive an expression for n = n,., for which the perturbation theory is no longer valid. One possible criterion
is

EO  ~ p) (7)
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Solution 1

1. First, & is expressed by @ and af

This follows
x2
%= ?O(aw +ata + aa’ + aa) (9)

The ascending and descending operators increase or decrease the index .

atal|l) = Vi+ 1V + 2|1 +2), (10)
atally =1)1), (11)
aa'lly = (1+ D)D), (12)
aally = VIVI = 1|l - 2) (13)

In order for the matrix elements to be non-zero, the following must apply: (n|l £ (0,2)) = d,, +(0,2))- This
means that only states with [ = n,n + 2 contribute.

2. The expected value can be written by inserting 1 = >, |I)(I| as

aln|dtn) = a Y (n|#*|1){1[2%n) = a Y [(n|2?|1)]”
l l
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= ((l + 1)+ 2)[(nfl+2)2 + (2L + 1)2[(n|) [ + 11 — 1)[{n]l — 2>|2)
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This results in

EW = 4 (3+6n+6n ). (15)

3. It can be seen that E,(Ll) grows quadratically with n, whereas E,(lo) only grows linearly. Thus the approximation
fails for large n. One can assume that the maximum value for n is given by

Ey).. = B, (16)
for nyee > 1. Therefore
3axd 2 hw
mnmam ~ 2 n?mm = Nmazx ~ 5047583 (17)
Thus, the result of the perturbation calculation is meaningful for n < Nye. &~ %%
0

* Problem 2 x Schmidt decomposition and reduced density matrices

Consider a bipartite quantum system built from a direct product Hilbert space of the two parts, H = Ha4 ® Hp.
Let |a;) 4 with ¢ = 1,2,---n label a complete orthonormal basis of states in Hilbert space A, and likewise for Hilbert
space B: |b;) g, with j =1,2,--- N > n. The most general quantum state in the full Hilbert space can be expressed
as
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with complex coeflicients, c;;.

A theorem proven on the wikipedia page, https://en.wikipedia.org/wiki/Schmidt_decomposition, states
that there always exist orthonormal sets, [1;)a, |¢;)p with 4,57 = 1,2,---n such that the general state |®) can be
re-expressed in a Schmidt-decomposed form:

|®) = ZWWDA ® |¢i) B (19)

with the normalization condition, Y i, |v;]* = 1.
1. Using this Schmidt form, obtain expressions for the reduced density matrices,
pa = TrplON], pp = Tra|®)(@] (20)

Demonstrate that the reduced density matrices are Hermitian with eigenvalues \; = |v;]?, i = 1,2,---n, and
associated eigenvectors, [1;)4, |¢;)p. Thus, the Schmidt-decomposition for any state |®) can be obtained by
computing and then diagonalizing the reduced density matrices.

2. Now consider, as an example, two spin—% particles, labelled A and B, in a (normalized) pure state,

@) 14| s+ 31 Da® (15 +] s (21)
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Obtain the Schmidt-decomposition of this state by computing and diagonalizing the two reduced density
matrices and show that the expression of |®) obtained from Eq. (19) is same to the Eq. (21).

Solution 2

1. We can always extend the orthonormal set {|¢;)5}j=1..n to a basis of B, which is {|¢;)p}j=1,..~. Now we
compute p4 and pp,

N
pa = Trp|®)(®| = Z<¢>\B<I>><<I>|¢j>3
N n " n
= Z > 1vil* (0510100l 63)) m (10:) (Vi) a = > P (i) a, (22)
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pp = Tral®)(®| = Z<¢|A<I>><<I>|¢j>,4
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=D Pl Wl alload (@il s = D loil* (i) (¢:) 5, (23)

Jj=11i=1 =1
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Since the sets {|;)a}j=1,... and {|¢;) B} j=1,...n are orthonormal, we see that they are eigenvectors of p4 and
pB, with corresponding eigenvalues {|v1[?,- -, [v,[*} and {|v1|?, -+, |v.|?,0,- - - , 0}, respectively.

2. Given this state, we compute the reduced density matrices to be
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https://en.wikipedia.org/wiki/Schmidt_decomposition

pa has eigenvalues A = 1(2 + /2), with corresponding eigenvectors |+)4 = %ﬂ N £] ). pp also has
-1

(1£V2)[1) +11).
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eigenvalues Ay = 1(2 £ /2), with corresponding eigenvectors |+£)p = ——
4F2v/2

Therefore

2) = > VAdla)a @lap) (27)
a==+

Problem 3 Stark effect

Consider a hydrogen atom in the ground state n = 1 in a homogeneous electric field E = Fé,. The field can be
considered as a perturbation. The Hamiltonian is given by

HZFI@‘FV (28)

where H, represents the unperturbed hydrogen atom and V = —eE? corresponds to the perturbation term. Calculate
the energy correction of the ground state in leading order.

1.

Show that the energy correction vanishes to first order E%l) = 0. Use the parity operator P for this. (Hint: The
eigenstates of the hydrogen atom transform as P|nlm) = (—1)!|nlm) and P2Pt = —2. In addition, PTP =1.)

Show that the matrix elements (100|Z|nml) are finite only for [ = 1 and m = 0. (Hint: z can be expressed
using spherical harmonics. Also use their orthogonality.)

Calculate the second order energy correction E%Q) where only states with n = 2 need to be considered. States
with higher excitation energies n > 3 can be neglected.

Solution 3

1.

The energy correction in first order is
EF) = (100|V|100) = —eFE(100|2(100) (29)
The fact that the matrix element disappears can be shown by considering the parity
(100|2]100) = (100|PT PzPT P[100) = —(100|2]100) (30)
which can only be satisfied by (100|£|100) = 0.

The selection rules for calculating matrix elements for eigenstates of angular momentum operators can only be
derived via more complex considerations, such as the Wigner-Eckart theorem. Therefore, the explicit integral
must (unfortunately) be considered here.

When calculating the matrix elements, it is used that z can be represented by spherical surface functions

Yim (0, )
47 47
z=rcosf = \/;TYL()(Q, ¢) = \/Zryl*,o(ga o)) (31)

Thus, with (r0¢|nml) = u, 1 (r)Y;m (0, ¢), and (ro¢|100) = \/%ulyo(r) the matrix elements become

00 T 21 *
(100|Z|nml) = /0 2y /O sin 06 /O dgbui;r(??\/Zl;rrlflfo(ﬁ,¢)l/l7m(0,qu)uml(r). (32)

If we consider the purely angle-dependent part, we find, using the orthogonality of the spherical harmonics,

2m

(100|[nmi) ~ / sin0d0 [ dBYyo(6, 0)Yim(0.0) ~ 61 160.m (33)
0 0

from which [ = 1 and m = 0 follows.



3. The second order energy correction is

100|z|nlm |(100|2|210) |?
2E2 | 2E2
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where we restrict ourselves to states with n = 2. The matrix element is

27
(100]£|210) = / drr/d9s1n9/ d¢u10 \/77'}/10(9 ?)Y1,0(0,¢)uz1(r)
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where it was used that [ df sinf fo% doYio(0,0)Y1,0(0,¢) =1 and

9e-r/an
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Qg
uz,1(r) = — ! —r/(2a0)
’ V3(2a0)3/2 ao
Thus,
2 15 18
(2)222 a0_22242 232
By B —m — P q03g, = gu®k
with Rydberg Energy Ry = 27?; = %



