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The problems whose solutions you need to upload are designated with stars.
* Problem 1 x Magnetic perturbation
Consider a spin-1/2 particle in a large magnetic field oriented along 2:
Hy = K- B027 (1)

where pp = —vS is the magnetic dipole moment, + is the gyromagnetic ratio, and § = 2o is a vector of spin

2
operators. Let us consider the effects of the perturbation
V =—p- (B2 + Ba). (2)

1. Using perturbation theory formulas derived during the lectures, find the changes in the eigen-energies to lowest
order in By and Bs.

2. Likewise, find the change in the eigenstates to lowest order in B; and Bs.

3. Calculate the exact eigen-energies and eigenvectors of H = Hy+ V and compare them with the results of parts
1 and 2.

Solution 1

1. The bare Hamiltonian we write as
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where wg = 7By is the Larmor frequency. Clearly, it has the energies and eigenvectors:
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The perturbation we write as:
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where wy = vB; and wy = vBy. The energy perturbation formula
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2. The eigenvector perturbation formula
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gives

3. The exact solution is
El/? = i%hQ,
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where
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This agrees with the previous after a Taylor expansion.

* Problem 2 x Schwinger representation of angular momentum operators

Consider two decoupled harmonic oscillators with lowering operators a4 and a_. They obey

[aJr’au =1 (3)
la—,al]=1 (4)
and commute with each other, [ay,a_] = [ay,a' | = [aj_,a,] = [ai, al]=0.
1. Let us suppose that in the Hamiltonian
H = hwy(abar +3) +hw_(ala_ +1) (5)
the two harmonic oscillators have the same frequency wy = w_ = wy. What is the degeneracy of an arbitrary

state |n4,n_)? List all the states with the same energy.



2. Now consider the operators
Jp = hala_, (6)
J_=halay. (7)
Show that [H, J+] = 0. Give a physical explanation for why Ji preserves the energy.

3. Define the operator

1
Jo= oplde Jo]. (8)
Find it and show that
(o, o] = £ (9)
4. Introduce
1
J, = §(J+ +Jo), (10)
1
Jy = E(L_ —J) (11)
and express
=T+ + T (12)

in terms of N = aia+ +ala_. Compare with results of part 1.

Solution 2

1. The energy of the state |n4,n_) is then
En+7n, == ﬁwo(n+ +n_ + 1),

which is the same as long as N = n4 + n_ is the same. ny must be positive or zero so the degenerate states
are

|N70>3|N*171>7|N7232>7-“3|17N71>7|0,N>

and the overall degree of degeneracy is N + 1.

2. Write
H = hwo(Ny + N_ +1).

Then

[H,ay] = hwo[Ny + N_ + 1,a4] = —fuwpay,

[H,al,] = hwo[Ny + N_ +1,al] = +hwoal, .
Hence

[H,J,]=[H, haia,] = h[H, ai]a, + hal[H, a_]= h2w+a1a, - hgw,aia, =0

because w; = w_, and likewise for [H, J_] = 0. Physically, J+ move a quantum from one harmonic oscillator
to the other. As long as the frequencies of the two harmonic oscillators are the same, this preserves the total
energy.



3. After a little algebra, one readily finds that
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and therefore
2
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So the effective j = N/2. The corresponding degeneracy 2j + 1 = N + 1 agrees with part 1.

There will be no Problem 3. Happy summer holidays!



