Moderne Theoretische Physik II (WS 2024/25)

Prof. Dr. A. Shnirman Adrian Reich

Exam No. 1 18.02.2025

1. Time-dependent perturbation

(10 points)

The Hamiltonian operator of a one-dimensional harmonic oscillator is

$$H_0 = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2. {1}$$

Additionally, let there be a time-dependent perturbation V(t) with

$$V(t) = \lambda \sqrt{2m\hbar\omega^3} x e^{-|t|/\tau}$$
(2)

where $\lambda \ll 1$ and $\tau > 0$ is a time scale. The total Hamiltonian operator is thus $H(t) = H_0 + V(t)$. For $t \to -\infty$, the system is in its ground state (n = 0).

- a) In first-order perturbation theory in λ , determine the probability with which the system is in its first excited state (n = 1) at $t \to +\infty$. (6 points)
- b) In second-order perturbation theory in λ , determine the probability with which the system is in its second excited state (n=2) at $t \to +\infty$. (4 points)

<u>Note:</u> It is useful to express the Hamiltonian operator via raising and lowering operators, $a^\dagger = \sqrt{\frac{m\omega}{2\hbar}}(x - \frac{i}{m\omega}p), \ a = \sqrt{\frac{m\omega}{2\hbar}}(x + \frac{i}{m\omega}p).$

2. Dirac equation

(10 points)

The Dirac equation is given by

$$(i\hbar\gamma^{\mu}\partial_{\mu} - mc)\Psi = 0 \tag{3}$$

with the four Dirac matrices γ^{μ} , which satisfy the following algebra

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}.\tag{4}$$

 $g^{\mu\nu}$ is the Minkowski metric.

- a) Show that every solution Ψ of the Dirac equation also solves the Klein-Gordon equation $(\hbar^2 \partial_\mu \partial^\mu + m^2 c^2) \Psi = 0$. (3 points)
- b) Show that $\partial_{\mu}j_{A}^{\mu} \propto i\bar{\Psi}\gamma_{5}\Psi$ with $j_{A}^{\mu} = c\bar{\Psi}\gamma^{\mu}\gamma_{5}\Psi$ and determine the proportionality constant. It is $\bar{\Psi} = \Psi^{\dagger}\gamma^{0}$ and $\gamma_{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}$ satisfies $\{\gamma^{5}, \gamma^{\mu}\} = 0$. (3 points)
- c) Determine (up to normalization constants) the four linearly independent solutions of the Dirac equation at a given 3-momentum \vec{p} . (4 Punkte)

3. Canonical partition function

(10 points)

We consider a system with three possible single-particle states. The energies of the the single-particle states are spin-independent and given by $\varepsilon_1 = \varepsilon_2 = 0$ as well as $\varepsilon_3 = \Delta$. Now, we introduce two (indistinguishable) spin- $\frac{1}{2}$ fermions into the system.

- a) Determine the canonical partition function. Remember to take into account the spin degeneracy. (6 points)
- b) Determine the entropy S(T) of the system as well as the expectation value of the energy U(T) as a function of the temperature T. For each of these quantities, find the limits $T \to 0$ and $T \to \infty$. (4 points)

4. Bose-Einstein condensation

(10 points)

We consider non-interacting bosons in a 3-dimensional volume V with the dispersion relation $\varepsilon(\vec{p}) = \alpha |\vec{p}|^{\kappa} \ (\alpha, \kappa > 0)$ at a temperature T > 0.

- a) Calculate the density of states $\nu(\varepsilon)$. (3 points)
- b) Using the density of states, give an expression for the particle number density $n(T,V,\mu)$ and determine the values of κ for which at low temperatures Bose-Einstein condensation takes place. (7 points)

Note: The occuring integrals do not need to be solved explicitly.