Zur Vorbereitung

Absprache mit PrüferIn über folgende Themengebiete: -

Absprache mit Prüferln über Literatur/Skripte: -

Verwendete Literatur/Skripte: Schwabl Statistische Mechanik + QM für

fortgeschrittene, Tannoudji 1+2, Skript Schön/Shnirman

Dauer der Vorbereitung: 6 Wochen

Art der Vorbereitung: allein, am Ende ein Paar Mal abgefragt

Allgemeine Tips zur Vorbereitung: Basics müssen sitzen sonst kommt man nicht zu schweren Fragen, Herleitungen mit komplizierten Rechnungen sind relativ unwichtig. Formeln auswendig hinschreiben und erklären können ist wichtiger

Zur Prüfung

Wie verlief die Prüfung? immer wieder stockend, Basics saßen nicht

Wie reagierte die Prüferln, wenn Fragen nicht sofort beantwortet wurden? Ist geduldig und hilft.

Kommentar zur Prüfung: Man bekommt bei einer Antwort kein Feedback ob es jetzt die Antwort war die er hören wollte. -> reden, reden bis er einen unterbricht

Kommentar zur Benotung: 2,3

Die Schwierigkeit der Prüfung: H-Atom Elektron in |200>. Was beschreibt Fermis Goldene Regel? ->Übergang ins Kontinuum. Was ist der Störterm und das Kontinuum beim Übergang in |100>? Stöterm: Photon. Kontinuum: mögliche k des Photons.

Die Fragen

Schrödinger-Gleichung?

Kann Psi auch von anderen Variablen abhängen außer x und t?

Beweis: Eigenzustände orthogonal.

Wie entwickelt man Zustände in der Zeit?

Was macht man, wenn |n> nicht Eigenvektor von H ist?

H-Atom:

Hamilton?

Welche Quantenzahlen?

Wofür braucht man den vSk0?

H-Atom mit B-Fled: Was passiert mit den Zuständen n=2?

Einbezug des Spins? Herleitung Pauligleichung.

Was beschreibt Fermis-Goldene Regel?

Formel hinschreiben?

Konkreter Fall: H-Atom im n=2 Zustand. Zustand stabil.

Was ist die Störung? Was das Kontinuum? (Störung: Photon, Kontinuum k-vektoren)

Großkanonische Zustandssumme? Summation? Boson im Magnetfeld, Berechnung Suszeptibilität. Was beschreibt die Bose-Einstein-Verteilung?