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I. TIME-DEPENDENT PERTURBATION THEORY

A. Evolution operator

Schrödinger equation:
ih̄

d

dt
| i = H(t) | i , (1)

where H(t) is (in general time-dependent) Hamiltonian.
Initial condition: We know the state of the system (wave function) at t = t0. We denote

it as | (t0)i.
We want to know the state at arbitrary time t > t0. Formal solution reads

| (t)i = U(t, t0) | (t0)i , (2)

where U(t, t0) is the evolution operator.
Evolution operator satisfies the same Schrödinger equation:

ih̄
d

dt
U(t, t0) = H(t)U(t, t0) , (3)

and the initial condition U(t0, t0) = 1̂ (unity operator). As t0 is arbitrary we have U(t, t) = 1̂

for arbitrary t.
Evolution operator is unitary:

[U(t, t0)]
† = [U(t, t0)]

�1 = U(t0, t) . (4)

Proof: (ih̄U̇ = HU) ! (�ih̄U̇
† = U

†
H) on the other hand (UU

�1 = 1) ! (U̇U
�1 = �UU̇

�1) !

(U̇�1 = �U
�1

U̇U
�1 = �U

�1
HUU

�1
/(ih̄)) ! (�ih̄U̇

�1 = U
�1

H). End of proof.

Since we assumed initially that t > t0, the operator U(t0, t) should be understood as
evolution operator backward in time.

For time-independent Hamiltonian

U(t, t0) = e
�iH(t�t0)/h̄ . (5)

B. Transitions

By transitions we usually (but not always) understand the following: In the far past
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FIG. 1: Schematic picture showing the perturbation V (t) which acts only during a finite time

period.

and in the far future the system is described by a time-indepndent Hamiltonian H0. In the
middle a perturbation V (t) is added so that the full Hamiltonian reads

H = H0 + V (t) . (6)

Example: a pulse of electric field acts on an atom and excites it.
Assume that V (t < tinitial) = 0 and V (t > tfinal) = 0 (Fig. 1).
We introduce the eigenstates |ni of H0

H0 |ni = En |ni , (7)

These states evolve in time as
|n(t)i = e

�iEnt/h̄ |ni . (8)

(by choice |n(t = 0)i = |ni).
Assume that before the perturbation V (t) is switched on the system was in one of the

eigenstates of H0. Say | (t < tinitial)i = |n(t)i. After the perturbation passes, i.e., for
t > tfinal, the wave function can be expanded in the basis of the eigenstates:

| (t > tfinal)i =
X

m

an!m |m(t)i . (9)

Thus the state is a superposition of eigenstates with amplitudes an!m. The amplitudes are
time-independent, since V (t > tfinal) = 0. The probability of transition from state |n(t)i to
state |m(t)i is given by Pn!m = |an!m|2.
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C. Interaction picture

Interaction picture is in the middle between Schrödinger and Heisenberg pictures. In
Schrödinger picture the wave functions evolve with full Hamiltonian. In Heisenberg picture
the wave functions do not evolve at all, instead the operators evolve. Idea of interaction
picture: the wave function evolves only due to perturbation V (t).

We introduce new wave functions | I(t)i by

| (t)i = e
�iH0t/h̄ | I(t)i , (10)

where | (t)i is the Schrödinger wave function.
Equation of motion (Schrödinger equation) in the interaction picture:

ih̄
d

dt
| Ii = VI(t) | Ii , (11)

where
VI(t) ⌘ e

iH0t/h̄V (t)e�iH0t/h̄ (12)

D. Dyson expansion

Evolution operator in the interaction picture:

| I(t)i = UI(t, t0) | I(t0)i (13)

It satisfies the equation of motion:

ih̄
d

dt
UI(t, t0) = VI(t)UI(t, t0) , (14)

Initial condition: UI(t0, t0) = 1̂.
Rewrite Eq. (14) as

UI(t, t0) = UI(t0, t0) +

tZ

t0

✓
� i

h̄

◆
VI(t

0)UI(t
0
, t0)dt

0

= 1̂ +

tZ

t0

✓
� i

h̄

◆
VI(t

0)UI(t
0
, t0)dt

0
. (15)
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Now iterate: as zeroth order approximation take U
(0)
I (t, t0) = 1̂. Substitute into the RHS

of Eq. (15). This gives the first order approximation:

U
(1)
I (t, t0) ⇡ 1� i

h̄

tZ

t0

dt1 VI(t1) . (16)

Substitute again into the RHS of Eq. (15). Result: second order approximation:

U
(2)
I (t, t0) ⇡ 1� i

h̄

tZ

t0

dt1 VI(t1) +

✓
� i

h̄

◆2
tZ

t0

dt1

t1Z

t0

dt2 VI(t1)VI(t2) . (17)

And so on:

U
(n)
I (t, t0) ⇡ 1 + ...+

✓
� i

h̄

◆n
tZ

t0

dt1

t1Z

t0

dt2...

tn�1Z

t0

dtn VI(t1)VI(t2)....VI(tn) . (18)

Note, that in this integral the times are ordered: t1 > t2 > .... > tn. Can be rewritten as

U
(n)
I (t, t0) ⇡ 1 + ...+

1

n!

✓
� i

h̄

◆n
tZ

t0

dt1

tZ

t0

dt2...

tZ

t0

dtn T [VI(t1)VI(t2)....VI(tn)] , (19)

where T is the time ordering operator: T [VI(t1)VI(t2)] = VI(t1)VI(t2) if t1 > t2 and
T [VI(t1)VI(t2)] = VI(t2)VI(t1) if t2 > t1.

A symbolic way of writing:

UI(t, t0) = T exp

0

@� i

h̄

tZ

t0

dt
0
VI(t

0)

1

A (20)

E. 1-st order transition probability

We assume that at t0 < tinitial the system was prepared in state |n(t)i. In the interaction
picture that means that | I(t < tinitial)i = |ni (no time dependence). We want to know the
state | I(t)i for arbitrary t > tfinal. It is given by

| I(t)i = UI(t, t0) |ni ⇡

0

@1� i

h̄

tZ

t0

dt
0
VI(t

0)

1

A |ni , (21)

The probability that the system is in state |mi 6= |ni is given by

Pn!m ⌘ |hm | I(t)i|2 ⇡
1

h̄
2

������

tZ

t0

dt
0 hm|VI(t

0) |ni

������

2

(22)

7



F. The Golden Rule

Assume that the perturbation is time-independent between tinitial and tfinal (Fig. 2). That

t

V(t)

t initial t !nalt0

FIG. 2: Time-independent perturbation V (t).

is V (tinitial < t < tfinal) = V and V (t) = 0 otherwise. Then hm|VI(t) |ni = Vmne
�i(En�Em)t/h̄,

where Vmn ⌘ hm|V |ni. Thus

Pn!m ⇡ 1

h̄
2

������
Vmn

tZ

t0

dt
0
e
�i(En�Em)t0/h̄

������

2

=
1

h̄
2 |Vmn|2

sin2 (!mn�t/2)

(!mn/2)
2 , (23)

where !mn ⌘ (Em � En)/h̄ and �t ⌘ tfinal � tinitial.
The function sin2(!�t/2)

(!/2)2
(considered as function of ! with �t being a parameter) is plotted

in Fig. 3. It has a sharp peak near ! ⇡ 0 of width ⇠ 1/(�t). Thus transitions happen only to

ω

1/(Δt)

Δt2

FIG. 3: ”Delta function”

the states with energies close to that of the original state En. More precisely, |!mn||�t| < 1

or |Em � En||�t| < h̄. This is called uncertainty relation for energy-time.
It is possible to show that

Z
d!

sin2 (!�t/2)

(!/2)2
= 2⇡�t . (24)

8



This is why in certain situations the following substitution is valid

sin2 (!�t/2)

(!/2)2
! 2⇡�(!)�t . (25)

Then, rather formally,

Pn!m ⇡ 1

h̄
2 |Vmn|2

sin2 (!mn�t/2)

(!mn/2)
2 ⇡ 2⇡

h̄
|Vmn|2 �(Em � En)�t . (26)

This gives for the transition rate

�n!m =
Pn!m

�t
=

2⇡

h̄
|Vmn|2 �(Em � En) . (27)

The last formula is the most common form of the Golden Rule.
What are the situations when the substitution by the delta function are allowed and how

can one use the rate containing a delta function? Mostly, the Golden Rule is applicable
if we have to sum over many densely packed levels |mi to which the transition happens,
i.e., for transitions to continuum (Fig. 4). That is, if we calculate the probability to leave

ω

1/(Δt)

Δt2

FIG. 4: ”Delta function” with dense spectrum of final states |mi.

the original state |ni and to go somewhere, it is given by Pn! =
P

m Pn!m. Assuming the
matrix element Vmn is more or less a constant (more generally Vmn depends smoothly on the
energy of the final state Em and does not depend on other quantum numbers of the state
|mi) we obtain

Pn! =
X

m

Pn!m =
X

m

1

h̄
2 |Vmn|2

sin2 (!mn�t/2)

(!mn/2)
2

⇡ 1

h̄
2

Z
dEm⌫(Em) |Vmn|2 2⇡�((Em � En)/h̄)�t

=
2⇡

h̄
|V (En)|2 ⌫(En)�t , (28)
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where ⌫(E) is the density of states of the final states |mi. Then ⌫(En) is the density of
the final states |mi evaluated at Em = En. Analogously V (En) ⌘ Vmn with Em = En.
The probability grows linearly in time. We obtain transition rate � = 2⇡

h̄ |V (En)|2 ⌫(En).
For the dense spectrum one may have a situation when Pn!m ⌧ 1 for all m. Thus the
first order perturbation theory is justified. Nevertheless, the total transition probability
Pn! =

P
m Pn!m does not have to be small. Thus the Golden Rule describes the process at

all relevant times.
If the matrix elements Vmn depend not only of the energy Em but also on the other

quantum numbers, one has to use the standard Golden Rule formula

�n!m =
2⇡

h̄
|Vmn|2 �(Em � En) . (29)

and substitute it into an integral over the states |mi.

G. Harmonic perturbation

V (tinitial < t < tfinal) = V cos(!t) and V (t) = 0 otherwise.

Pn!m ⇡ 1

h̄
2

������
Vmn

tZ

t0

dt
0 cos(!t0)e�i(En�Em)t0/h̄

������

2

⇡ 1

h̄
2

|Vmn|2

4


sin2 ([!mn + !]�t/2)

([!mn + !]/2)2
+

sin2 ([!mn � !]�t/2)

([!mn � !]/2)2

�
. (30)

(the mixed terms neglected) We obtain transitions with energy change ±h̄!. The Golden
rule result in this case reads

�n!m =
⇡

2h̄
|Vmn|2 (�(Em � En + h̄!) + �(Em � En � h̄!)) . (31)

Again it makes sense only if submitted into an integral, i.e., when the states |mi form a
kontinuum.

H. Adiabatic approximation

Assume now another situation when a perturbation remains forever (see Fig. 5).
We use again the formula

| I(t)i = UI(t, t0) |ni ⇡

0

@1� i

h̄

tZ

t0

dt
0
VI(t

0)

1

A |ni , (32)
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V(t)

t 0

FIG. 5: Perturbation V (t) that does not disappear.

(Recall, |mi are the eigenstates of H0). The amplitude an!m in the expansion of the wave
function | I(t)i is given by

an!m = � i

h̄

tZ

t0

dt
0
Vmn(t

0) ei!mnt0 . (33)

We integrate by parts:

an!m = �Vmn(t0)

h̄!mn
e
i!mnt0

���
t

t0
+

1

h̄!mn

tZ

t0

dt
0
✓
@Vmn(t0)

@t0

◆
e
i!mnt0 . (34)

At t0 there was no perturbation, V (t0) = 0, thus

an!m = �Vmn(t)

h̄!mn
e
i!mnt +

1

h̄!mn

tZ

t0

dt
0
✓
@Vmn(t0)

@t0

◆
e
i!mnt0 . (35)

Let us try to understand the meaning of the first term of (35). Recall the time-
independent perturbation theory for Hamiltonian H = H0 + V . The corrected (up to
the first order) eigenstate |ñi is given by

|ñi ⇡ |ni �
X

m 6=n

Vmn

Em � En
|mi (36)

It is clear that the first term of (35) and the first order corrections in (36) have something
to do with each other (are the same). To compare we have to form in both cases the time-
dependent Schrödinger wave function. From (35) we obtain the interaction representation
wave function | Ii = |ni +

P
m 6=n an!m(t) |mi, which leads to (neglecting the second term

in the RHS of (35))

| I(t)i = |ni �
X

m 6=n

Vmn

Em � En
|mi ei(Em�En)t/h̄ . (37)
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In the Schrödinger picture | (t)i = e
�iH0t/h̄ | I(t)i we obtain

| (t)i = |ni e�iEnt/h̄ �
X

m 6=n

Vmn

Em � En
|mi e�iEnt/h̄ (38)

The same we get from (36) (upon neglecting corrections to the energy En).
Thus, the first term of (35) corresponds to the state ”adjusting” itself to the new Hamil-

tonian, i.e., remaining the eigenstate of the corrected Hamiltonian H = H0 + V . The ”real”
transitions an only be related to the second term of (35).

Idea of the adiabatic approximation: @Vmn(t)/@t is small and moreover multiplied in
the integral of (35) by an oscillating exponent. This integral can be neglected. Thus, no
real transition will happen, and, the state will remain the eigenstate of a slowly changing
Hamiltonian.

I. Instantaneous frame

New idea: follow the eigenstates of the changing Hamiltonian H(t). It is convenient to
introduce a vector of parameters ~R upon which the Hamiltonian depends and which change
in time. H(t) = H(~R(t)). We no longer consider a situation when only a small perturbation
is time-dependent. Diagonalize the Hamiltonian for each ~R. Introduce instantaneous eigen-
states

���n(~R)
E

, such that H(~R)
���n(~R)

E
= En(~R)

���n(~R)
E

. Since H(~R) changes continuously,

it is reasonable to assume that
���n(~R)

E
do so as well. Introduce a unitary transformation

⌦(t, t0) ⌘
X

n

���n(~R(t0))
ED

n(~R(t))
��� =

X

n

|n0i
D
n(~R(t))

��� . (39)

For brevity |n0i ⌘
���n(~R(t0))

E
. Idea: if | (t)i /

���n(~R(t))
E

, i.e., follows adiabatically,
the new wave function: |�(t)i = ⌦(t, t0) | (t)i / |n0i does not change at all. In other
words in the adiabatic approximation the time evolution operator would be approximated
as U(t, t0) ⇡ [⌦(t, t0)]�1. Let’s find the Hamiltonian governing the time evolution of |�(t)i:

ih̄

����̇
E
= ih̄⌦

��� ̇
E
+ ih̄⌦̇ | i = ⌦H(t) | i+ ih̄⌦̇ | i =

h
⌦H⌦�1 + ih̄⌦̇⌦�1

i
|�i (40)

Thus the new Hamiltonian is given by

H̃ = ⌦H⌦�1 + ih̄⌦̇⌦�1 (41)
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The first term is diagonal. Indeed

⌦(t, t0)H(t)[⌦(t, t0)]
�1 =

X

nm

|n0i
D
n(~R(t))

���H(~R(t))
���m(~R(t))

E
hm0|

=
X

n

En(~R(t)) |n0i hn0| . (42)

Thus transitions can happen only due to the second term which is proportional to the time
derivative of ⌦, i.e., it is small for slowly changing Hamiltonian.

J. Geometric Phase

We can treat the Hamiltonian (41) perturbatively. H̃(t) = H0(t) + V (t), where

H0(t) =
X

n

En(~R(t)) |n0i hn0| , (43)

and
V (t) = ih̄⌦̇⌦�1 = ih̄

X

n,m

|n0i
D
ṅ(~R(t))

���m(~R(t))i hm0| . (44)

The operator (44) may have diagonal and off-diagonal elements. The latter will be re-
sponsible for transitions and will be discussed later. Here we discuss the role of the diagonal
elements, e.g.,

Vnn(t) = hn0| ih̄⌦̇⌦�1 |n0i = ih̄

D
ṅ(~R(t))

���n(~R(t))i = ih̄ ~̇R

D
~rR n(~R)

���n(~R)i . (45)

Here ~rR is the gradient in the space of parameters.
This (real) quantity serves as an addition to energy En(~R), i.e., En(R(t)) ! En(~R(t)) +

Vnn(t). Thus, state evolves in time as

|n0i e
�(i/h̄)

tR

t0

dt0
h
En(~R(t0))+Vnn(t0))

i

= |n0i e�i�D,ne
�i�B,n . (46)

The so called dynamical phase is defined as

�D,n =
1

h̄

tZ

t0

dt
0
En(~R(t0)) . (47)
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The additional Berry phase or geometric phase is defined as

�B,n =
1

h̄

tZ

t0

dt
0
Vnn(t

0) = i

tZ

t0

dt
0 ~̇R ·

D
~rR n(~R)

���n(~R)i

= i

~R(t)Z

~R(t0)

d~R ·
D
~rR n(~R)

���n(~R)i . (48)

The last expression is completely geometric.
The Berry phase is well defined only for closed path, i.e., when the Hamiltonian returns

to itself. Indeed the choice of the basis
���n(~R)

E
is arbitrary up to a phase. Instead of

���n(~R)
E

we could have chosen e
i�(~R)

���n(~R)
E

. Instead of (45) we would then obtain

Vnn(t) = ih̄

D
ṅ(~R(t))

���n(~R(t))i+ h̄�̇(~R(t))

= ih̄ ~̇R ·
D
~rR n(~R)

���n(~R)i+ h̄ ~̇R · ~rR �(~R(t)) . (49)

Instead of (48) we would obtain

�B,n =
1

h̄

tZ

t0

dt
0
Vnn(t

0) = i

~R(t)Z

~R(t0)

d~R ·
D
~rR n(~R)

���n(~R)i+ i

~R(t)Z

~R(t0)

d~R · ~rR �(~R) . (50)

Thus the Berry phase is, in general, not gauge invariant. For a closed path we must choose
the basis

���n(~R)
E

so that it returns to itself. That is
���n(~R)

E
depends only on the parameters

~R and not on the path along which ~R has been arrived. This means �(~R(t0)) = �(~R(t0+T )),
where T is the traverse time of the closed contour. In this case the integral of ~rR � vanishes
and we are left with

�B,n = i

Z
dt

D
ṅ(~R(t))

���n(~R(t))i = i

Z
d~R

D
~rR n

���ni (51)

This is Berry’s phase. It is also a geometric phase. Physical meaning only for superpositions
of different eigenstates.

K. Non-adiabatic processes: transitions

H0 is diagonal, but time dependent. Interaction representation is simple to generalize:

|�(t)i ⌘ e

�(i/h̄)
tR

t0

dt0H0(t0)

|�I(t)i (52)
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and
ih̄

d

dt
|�Ii = VI(t) |�Ii , (53)

where

VI(t) ⌘ e

i
tR

t0

dt0H0(t0)/h̄

V (t)e
�i

tR

t0

dt0H0(t0)/h̄

(54)

(H0(t) commutes with itself at different times).
For the transition probability (of the first order) this gives

Pn!m ⇡ 1

h̄
2

������
ih̄

tZ

t0

dt
0
D
ṁ(~R(t0))

���n(~R(t0))i e
�i

t0R

t0

dt00
h
En(~R(t00))�Em(~R(t00))

i
/h̄

������

2

=

������

tZ

t0

dt
0
D
ṁ(~R(t0))

���n(~R(t0))i e
�i

t0R

t0

dt00
h
En(~R(t00))�Em(~R(t00))

i
/h̄

������

2

. (55)

L. Landau-Zener transition

H(t) = �1

2
(✏(t)�z +� �x) (56)

Parameter R(t) = ✏(t) = ↵t.
The eigenstates (dependent on R)

|0(R = ✏)i = cos(⌘/2) |"i+ sin(⌘/2) |#i

|1(R = ✏)i = � sin(⌘/2) |"i+ cos(⌘/2) |#i , (57)

where tan ⌘ ⌘ �/✏. We find also the eigenenergies (dependent on R = ✏) E0/1 =

⌥(1/2)
p
✏2 +�2.

Assume that at t ! �1 the system was in the state |0(R = ✏ = �1)i. What is the
probability that at t ! 1 a transition will happen to the state |1(R = ✏ = 1)i?

From Eq. (55) we obtain

P0!1 ⇡

������

1Z

�1

dt
0 ⌦1̇

�� 0i e
(i/h̄)

t0R

0
dt00

p
�2+↵2t002

������

2

. (58)

(The lower limit of integration in the exponent was changed to 0, this just adds a constant
phase which does not change the probability).
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FIG. 6: Energy levels E0(✏) and E1(✏).

We obtain
⌦
1̇
�� 0i = �(1/2)⌘̇. From cot ⌘ = (↵t/�) we obtain ⌘̇ = � sin2

⌘(↵/�) =

� �↵
�2+↵2t2 . For the transition probability this gives

P0!1 ⇡

������
1

2

1Z

�1

dt
0 �↵

�2 + ↵2t02
e
(i/h̄)

t0R

0
dt00

p
�2+↵2t002

������

2

. (59)

Introducing a new (dimensionless) time ⌧ ⌘ ↵t/� we obtain

P0!1 ⇡

������
1

2

1Z

�1

d⌧
0 1

1 + ⌧ 02
e
i�

⌧ 0R

0
d⌧ 00

p
1+⌧ 002

������

2

, (60)

where � ⌘ �2
/(h̄↵). We see that the result depends only on �.

M. Berry has calculated this integral and got

P0!1 ⇡
���(⇡/3) e�

⇡�
4

���
2

= (⇡2
/9) e�

⇡�
2 . (61)

Problem: the result is non-analytic in ↵ which characterizes the slowness of the change of
the Hamiltonian. Thus the logic of our perturbative expansion does not work. The result is
actually exponentially small for small enough ↵ and not only small because it is proportional
to ↵. It cannot be excluded that higher order contributions will give also exponentially small
results.

The exact result is known (Landau 1932, Zener 1932, Stückelberg 1932, Majorana 1932).
It reads: P0!1 = e

�⇡�
2 for arbitrary �.
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II. RELATIVISTIC QUANTUM MECHANICS: DIRAC EQUATION

A. Relativistic mechanics

1. 4-vectors

Space time x
µ = (x0

, x
1
, x

2
, x

3) = (ct,~r) (contravariant vector). Metric:

gµ⌫ = g
µ⌫ =

0

BBBBB@

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1

CCCCCA
(62)

Covariant vector: xµ = gµ⌫x
⌫ = (ct,�~r). The same with arbitrary vector a

µ = (a0,~a).
Scalar product: aµb

µ = gµ⌫a
⌫
b
µ = a

0
b
0 � ~a ·~b. Norm of a vector aµa

µ.
If aµaµ < 0 - space-like (raumartiger) vector
If aµaµ > 0 - time-like (zeitartiger) vector
If aµaµ = 0 - vector on the light-cone (Lichtkegel).
The time-like vectors can point into the future: a

0
> 0 or into the past a

0
< 0.

Gradient operators @µ ⌘ @/@x
µ = ((1/c)@/@t, ~r). As the index suggests @µ is a covariant

vector. Indeed @µx
µ = 4, i.e., a scalar. Respectively @µ ⌘ @/@xµ = ((1/c)@/@t,�~r).

2. E-m field

A
µ = (A0

, ~A) = (�, ~A) ; Aµ = (A0
,� ~A) = (�,� ~A) (63)

Tensor of e-m field Fµ⌫ = @µA⌫ � @⌫Aµ.

Fµ⌫ =

0

BBBBB@

0 Ex Ey Ez

�Ex 0 �Bz By

�Ey Bz 0 �Bx

�Ez �By Bx 0

1

CCCCCA
(64)

Covariant derivative: Dµ ⌘ @µ +
iq
h̄cAµ =

⇣
1
c
@
@t +

iq
h̄c�,

~r� iq
h̄c
~A

⌘
. Here q is the charge of

the particle. If it is an electron, then q = �e, where e > 0.
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3. Lorentz Group, Lorentz Transformations

Transformations which conserve the norm (interval) xµ
xµ. Homogeneous transformation

(no translation):
x
0µ = ⌦µ

⌫x
⌫
. (65)

Elements of ⌦µ
⌫ must be real (coordinates are real). Using x

0
µ = gµ↵x

0↵ we can obtain the
transformation law for the covariant components

x
0
µ = gµ↵x

0↵ = gµ↵⌦
↵
�x

� = gµ↵⌦
↵
�g

�⌫
x⌫ . (66)

This equation can be also written as

x
0
µ = ⌦ ⌫

µ x⌫ , ⌦ ⌫
µ ⌘ gµ↵⌦

↵
�g

�⌫
. (67)

From x
0µ
x
0
µ = x

µ
xµ (Lorentz transformations conserve the norm) we obtain

x
0µ
x
0
µ = ⌦µ

�x
�
gµ↵⌦

↵
�g

�⌫
x⌫ (68)

Thus the conservation of the norm requires

⌦µ
�gµ↵⌦

↵
�g

�⌫ = �
⌫

� . (69)

In matrix notation this gives ⌦T
g⌦ = g, where we have multiplied by g from the right. This

is the condition ⌦ must satisfy. In particular this means that Det [⌦] = ±1.
By ⌦ we mean ⌦µ

⌫ and not ⌦ ⌫
µ , which is a different object. For clarity we will denote

⌦ ⌫
µ by ⌦̃. In matrix notation ⌦̃ = g⌦g�1. Then Eq. (69) reads ⌦µ

�⌦
⌫

µ = �
⌫

� , i.e., in the
matrix notation ⌦T ⌦̃ = 1. Thus we obtain also ⌦̃ = (⌦T )�1 = (⌦�1)T . This allows us to
invert the basic relation x

0µ = ⌦µ
⌫x

⌫ as follows. We write (with no indices) x
0 = ⌦x. Then

x = ⌦�1
x
0. Then x

T = x
0(⌦�1)T = x

0(⌦T )�1 = x
0⌦̃. With indices this reads

x
µ = x

0⌫⌦ µ
⌫ . (70)

Lorentz group - all such transformations.
There are certain important sub-groups:
⌦0

0 > 0 (no change of direction of time for time-like vectors) - orthochronous (orthochrone
Lorentz-Gruppe).

Det
⇥
⌦µ

⌫

⇤
= 1 - proper L.G. (eigentliche L.G.).
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⌦0
0 > 0 and Det

⇥
⌦µ

⌫

⇤
= 1 - proper orthochronous L.G. (eigentliche orthochrone Lorentz-

Gruppe).
Examples:
Lorentz Boost characterised by velocity v < c of one coordinate system relative to the

other: 0

BBBBB@

x
00

x
01

x
02

x
03

1

CCCCCA
=

0

BBBBB@

cosh ⌘ � sinh ⌘ 0 0

� sinh ⌘ cosh ⌘ 0 0

0 0 1 0

0 0 0 1

1

CCCCCA

0

BBBBB@

x
0

x
1

x
2

x
3

1

CCCCCA
, (71)

where tanh ⌘ = v/c. There are 3 such boosts.
Rotation by angle ✓:

0

BBBBB@

x
00

x
01

x
02

x
03

1

CCCCCA
=

0

BBBBB@

1 0 0 0

0 cos ✓ sin ✓ 0

0 � sin ✓ cos ✓ 0

0 0 0 1

1

CCCCCA

0

BBBBB@

x
0

x
1

x
2

x
3

1

CCCCCA
, (72)

There are 3 such rotations.

4. Energy-momentum

In relativistic mechanics the energy and the momentum form a 4-vector. Namely: p
µ =

(E/c, ~p), where E =
p

m2c4 + c2(~p)2. The norm is given by p
µ
pµ = (mc)2.

The Hamiltonian of a charged particle in a given e-m field is given by

H = c

r
(mc)2 +

⇣
~p� q

c

~A

⌘2

+ q� . (73)

B. Klein-Gordon equation

As in non-relativistic mechanics we substitute ~p ! �ih̄~r and E ! ih̄@/@t. In 4-vector
”language” this means p

µ = (E/c, ~p) ! ih̄@
µ = ((ih̄/c)@/@t,�ih̄~r).

Using (E � q�)2 � c
2
⇣
~p� q

c
~A

⌘2

= (mc
2)2 we obtain the Klein-Gordon equation

"✓
ih̄
@

@t
� q�

◆2

� c
2
⇣
�ih̄~r� q

c

~A

⌘2
#
 = (mc

2)2 , (74)
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where  is the scalar (one component) wave function. In terms of the covariant derivatives
Dµ this can be rewritten as

⇥
h̄
2
DµD

µ + (mc)2
⇤
 = 0 (75)

The Lorentz invariance of this equation is then self-evident.
This is the 2-order differential equation. To specify the state of the system at all times

we have to know  and @ /@t at initial time. Thus  alone does not describe the state of
the system: BAD.

We investigate the case of zero e-m field. Then the equation reads
⇥
h̄
2
@µ@

µ + (mc)2
⇤
 = 0 (76)

Solutions: plane waves  / e
�(i/h̄)(Et�~p~r) with E = ±c

p
(mc)2 + (~p)2. There are negative

energy solutions: BAD but we will have the same in Dirac theory and it will at the end be
its triumph.

1. Density and current

The complex conjugated wave function  ⇤ also satisfies
⇥
h̄
2
@µ@

µ + (mc)2
⇤
 ⇤ = 0 (77)

We then obtain
 ⇤(@µ@

µ )� (@µ@
µ ⇤) = 0 (78)

and
@µ [ 

⇤(@µ )� (@µ ⇤) ] = 0 (79)

Thus if we introduce the 4-current

j
µ =

ih̄

2m
[ ⇤(@µ )� (@µ ⇤) ] (80)

it satisfies the continuity equation @µj
µ = 0.

The components of jµ are given by j
µ = (c⇢,~j), where

c⇢ =
ih̄

2mc


 ⇤@ 

@t
� @ ⇤

@t
 

�
(81)

and
~j = � ih̄

2m

h
 ⇤(~r )� (~r ⇤) 

i
(82)
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The continuity equation then reads @⇢/@t+ ~r~j = 0. The continuity equation is GOOD but
the density ⇢ can be negative - BAD. We need another equation.

Exercise: show that with the e-m field the 4-current density satisfying the continuity equation

@µj
µ = 0 is given by

j
µ =

ih̄

2m
[ ⇤(Dµ )� (Dµ )⇤ ] =

ih̄

2m
[ ⇤(@µ )� (@µ ⇤) ]� q

mc
A

µ ⇤ (83)

C. Dirac equation

The idea is to have a first order equation which could be written as Schrödinger equation
ih̄@ /@t = HD . For this equation to be Lorentz-invariant HD must be linear in ~p. Thus

HD = c~↵ · ~p+ �mc
2
, (84)

where ~↵ and � are some objects independent of time and cordinates. The Schrödinger
equation then reads

(p0 � ~↵ · ~p� �mc) = 0 , (85)

where p0 = p
0 = E/c = (ih̄/c)@/@t.

On the other hand we still want  to satisfy the Klein-Gordon equation

(p20 � (~p)2 � (mc)2) = 0 , (86)

since it just expresses the basic relativistic relation. We multiply (85) by (p0 + ~↵ · ~p+ �mc)

from the left
(p0 + ~↵ · ~p+ �mc)(p0 � ~↵ · ~p� �mc) = 0 , (87)

and want this to be equivalent to the Klein-Gordon equation. In other words we want to
factorize the operator p

2
0 � (~p)2 � (mc)2 as

p
2
0 � (~p)2 � (mc)2 = (p0 + ~↵ · ~p+ �mc)(p0 � ~↵ · ~p� �mc) (88)

Now we should determine what ~↵ and � should be. The operators p0 and ~p commute with
each other and the components of ~p commute as well. If also ~↵ and � would be commuting
numbers we would not get the Klein-Gordon equation. Let’s assume they do not commute
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(they are matrices). Then

(p0 + ~↵ · ~p+ �mc)(p0 � ~↵ · ~p� �mc)

=
⇥
p
2
0 �

X

k

(↵k)
2
p
2
k � �

2
m

2
c
2

�
X

k<l

(↵k↵l + ↵l↵k)pkpl �
X

k

(↵k� + �↵k)mcpk

⇤
(89)

Thus to obtain the Klein-Gordon equation we must require that

(↵k)
2 = 1 , �

2 = 1 , (90)

↵k↵l + ↵l↵k = 0 (for k 6= l) , (91)

↵k� + �↵k = 0 (92)

Dirac found that ~↵ and � must be at least 4⇥ 4 matrices. He suggested

~↵ =

0

@ 0̂ ~�

~� 0̂

1

A � =

0

@ 1̂ 0̂

0̂ �1̂

1

A (93)

where ~� is the vector of Pauli matrices:

�1 = �x =

0

@ 0 1

1 0

1

A , �2 = �y =

0

@ 0 �i

i 0

1

A , �3 = �z =

0

@ 1 0

0 �1

1

A . (94)

This is not the only possibility. We will not consider the other ones, since they are equivalent.
This means that the wave function  has 4 components. That is

 =

0

BBBBB@

 1

 2

 3

 4

1

CCCCCA
=

0

@ '

�

1

A , (95)

where

' =

0

@  1

 2

1

A , � =

0

@  3

 4

1

A (96)

!!!! Note, the  is not a 4-vector.
The Dirac equation reads

ih̄
@ 

@t
= c(~↵ · ~p) +mc

2
� = �ih̄c(~↵ · ~r) +mc

2
� , (97)
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or

ih̄
@'

@t
= c(~� · ~p)�+mc

2
' ,

ih̄
@�

@t
= c(~� · ~p)'�mc

2
� . (98)

This form is convenient for the non-relativistic limit.

1. Probability density, continuity equation

Let us choose ⇢ =  † = | 1|2 + | 2|2 + | 3|2 + | 4|2, where  † = ( ⇤
1, 

⇤
2, 

⇤
3, 

⇤
4).

Then
ih̄
@⇢

@t
= ih̄

✓
@ †

@t
 + † @ 

@t

◆
(99)

The conjugated Dirac equation reads (note that ~↵ are hermitian matrices)

�ih̄
@ †

@t
= ih̄c(~r † · ~↵) +mc

2 †
� , (100)

This gives

ih̄
@⇢

@t
= ih̄c

⇣
�(~r † · ~↵) � †(~↵ · ~r )

⌘

= �ih̄c~r · ( †
~↵ ) (101)

From here we conclude
~j = c †

~↵ (102)

No derivatives in ~j and most importantly ⇢ is positive. GOOD.
4-current is then given by

j
µ = (c⇢,~j) = (c † , c †

~↵ ) (103)

D. Dirac equation with e-m field

ih̄
@ 

@t
� q� = c~↵ ·

⇣
~p� q

c

~A

⌘
 +mc

2
� , (104)

Exercise: show that even with e-m field ~j = c †
~↵ .
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E. Covariant form

We multiply the Dirac equation by � from the left. This gives

ih̄�
@ 

@t
= c�(~↵ · ~p) +mc

2 , (105)

We introduce: �0 = �, ~� = �~↵, and �
µ = (�0,~�)

~� = �~↵ =

0

@ 0̂ ~�

�~� 0̂

1

A �
0 = � =

0

@ 1̂ 0̂

0̂ �1̂

1

A (106)

Since p0 = (ih̄/c)@/@t and pµ = (p0,�~p), the Dirac equation reads

(�µpµ �mc) = (ih̄�µ@µ �mc) = 0 (107)

With the e-m field it is
⇣
�
µ
⇣
pµ �

q

c
Aµ

⌘
�mc

⌘
 = (ih̄�µDµ �mc) = 0 (108)

F. Properties of �
µ

�
µ
�
⌫ + �

⌫
�
µ = 2gµ⌫ (109)

(�0)† = �
0

, (�k)† = ��k (110)

1. 4-current

4-current is given by

j
µ = (c⇢,~j) = (c † , c †

~↵ ) = (c †
�
0
�
0 , c †

�
0
�
0
~↵ ) = c ̄�µ , (111)

where  ̄ ⌘  †
�
0 = ( ⇤

1, 
⇤
2,� ⇤

3,� ⇤
4).
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G. Form-invariance of Dirac equation under Lorentz transformations

We introduced �µ as if it was a 4-vector (of matrices). Here we clarify the issue. Consider
a Lorentz transformation of the system of coordinates

x
0µ = ⌦µ

⌫x
⌫

, x
µ = x

0⌫⌦ µ
⌫ (112)

We will also use a shorter form x
0 = ⌦x, and x = ⌦�1

x
0.

The covariant derivative transforms as

Dµ(x) = D
0
⌫(x

0)⌦⌫
µ (113)

which actually means the following @µ = @
0
⌫⌦

⌫
µ and Aµ(x) = A

0
⌫(x

0)⌦⌫
µ.

Substituting these all into the Dirac equation

(ih̄�µDµ(x)�mc) (x) = 0 (114)

we obtain
�
ih̄�

µ
D

0
⌫(x

0)⌦⌫
µ �mc

�
 (⌦�1

x
0) = 0 (115)

or
(ih̄�0⌫D0

⌫(x
0)�mc) (⌦�1

x
0) = 0 (116)

where �0⌫ ⌘ ⌦⌫
µ�

µ.
One possibility would be to define  0(x0) =  (⌦�1

x
0), i.e., to say that  is a set of 4 scalars.

Then we would have the equation
�
ih̄�

0⌫
D

0
⌫(x

0)�mc
�
 0(x0) = 0 (117)

It is not a good choice since �
0µ are no longer unitary and look completely different, even though

they still satisfy �
0µ
�
0⌫ + �

0⌫
�
0µ = 2gµ⌫ . Moreover the equation written in components would have

a different form. We do something different instead:

We look for a matrix S(⌦) such that

�
0⌫ = ⌦⌫

µ�
µ = S

�1
�
⌫
S (118)

That is for every Lorentz transformation ⌦ we want to find a corresponding S(⌦).
Then, defining  0(x0) = S(⌦) (⌦�1

x
0) and multiplying the Dirac equation by S(⌦) from

the left we obtain
(ih̄�⌫D0

⌫(x
0)�mc) 0(x0) = 0 (119)
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That is the equation is of the same form.
Matrix S(⌦), thus, defines the transformation of the wave function. It gives a different

representation of the Lorentz group. More precisely it is a two-fold representation. Indeed,
from Eq. (118) we observe that is S(⌦) solves (118) then also �S(⌦) does. This is a special
and important property of the spin representation of the Lorentz group. The wave function
is not a 4-vector but a ”spinor” or ”4-spinor” to differentiate from the non-relativistic ”2-
spinors”.

1. Examples

For a boost in the 01 ”plane” with velocity v < c, i.e.

⌦ =

0

BBBBB@

cosh ⌘ � sinh ⌘ 0 0

� sinh ⌘ cosh ⌘ 0 0

0 0 1 0

0 0 0 1

1

CCCCCA
, (120)

where tanh ⌘ = v/c, one finds

S(⌦) = exp


�1

2
↵1⌘

�
. (121)

Analogously for other boosts.
For a rotation around the axis 3, i.e., in 12 plane

⌦ =

0

BBBBB@

1 0 0 0

0 cos ✓ sin ✓ 0

0 � sin ✓ cos ✓ 0

0 0 0 1

1

CCCCCA
, (122)

S(⌦) = exp


i

2
⌃3✓

�
, (123)

where

~⌃ =

0

@ ~� 0̂

0̂ ~�

1

A (124)
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2. Infinitesimal transformations

The correspondence between the Lorentz transformations of the 4-vectors and their spin
representation is most convenient to discuss for infinitesimal transformations. An infinitesi-
mal Lorentz transformation can be written as ⌦ = 1 + (i/2)✓µ⌫ Jµ⌫ or with full indexes

⌦↵
� = 1 +

i

2
✓µ⌫ [J

µ⌫ ]↵� . (125)

Here ✓µ⌫ = �✓⌫µ, |✓µ⌫ | ⌧ 1 is an antisymmetric tensor of infinitesimal rotation angles.
There are 6 different angles. The 6 generators J

µ⌫ are given by

[Jµ⌫ ]↵� = i

h
g
µ↵
�
⌫
� � g

⌫↵
�
µ
�

i
. (126)

There are only 6 different generators because again J
µ⌫ = �J

⌫µ. The 6 generators are 3
boost generators Kn ⌘ J

0n (n = 1, 2, 3) and 3 generators of rotations Lm ⌘ (1/2)✏mlkJ
lk

(m, l, k = 1, 2, 3). If we have just one non-zero angle, e.g., ✓01 = �✓10 = ⌘ and the rest
vanish, the infinitesimal Lorentz transformation is the expansion of ⌦ = e

i⌘J01
= e

i⌘K1 . It is
easy to check that this matrix is exactly the matrix (120).

The algebra of the 6 generators is described by the following commutators:

[Ln, Lm] = i✏nmkLk ,

[Kn, Km] = �i✏nmkLk ,

[Ln, Km] = i✏nmkKk . (127)

The corresponding spin transformation reads

S(⌦) = 1 +
i

2
✓⌫µ J̃

µ⌫
, (128)

where
J̃
µ⌫ =

1

2
�
µ⌫ =

i

4
[�µ, �⌫ ] . (129)

(We use here also �
µ⌫ since these objects are frequently used.) Thus we only replace the

generators Jµ⌫ ! J̃
µ⌫ . We can again define 3 boost generators K̃n ⌘ J̃

0n (n = 1, 2, 3) and 3
generators of rotations L̃m ⌘ (1/2)✏mlkJ̃

lk (m, l, k = 1, 2, 3). These satisfy the same algebra
(127). If again the only non-vanishing angle is ✓01 = �✓10 = ⌘ we obtain S = e

i⌘J̃01
= e

i⌘K̃1 .
With �

01 = i �
0
�
1 = i↵1 we obtain S = exp[�(1/2)↵1⌘].
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Analogously, for a rotation around the z axis ✓12 = �✓21 = ✓ (and the rest vanish) we
obtain ⌦ = e

i✓J12 = e
i✓L3 and S(⌦) = e

i✓J̃12
= e

i✓L̃3 . With

L̃3 = J̃
12 = (i/2)�1�2 = (i/2)

0

@ 0 �1

��1 0

1

A

0

@ 0 �2

��2 0

1

A =
1

2

0

@ �3 0

0 �3

1

A =
1

2
⌃3 (130)

we obtain S(⌦) = e
(i/2)✓⌃3 . The important feature of the spin representation of the Lorentz

group is that for ✓ = 2⇡ we obtain ⌦ = 1, but S(⌦) = �1.

H. Spin operator, total angular momentum.

Orbital angular momentum

~L = ~r ⇥ ~p = �ih̄~r ⇥ ~r (131)

does not commute with the Hamiltonian HD = c~↵ · ~p+ �mc
2.

[~L,HD] = (~r ⇥ ~p)(c~↵ · ~p+ �mc
2)� (c~↵ · ~p+ �mc

2)(~r ⇥ ~p)

= (~r ⇥ ~p)(c~↵ · ~p)� (c~↵ · ~p)(~r ⇥ ~p)

= c✏ijkrjpk↵mpm � c↵mpm✏ijkrjpk (132)

In the first term we use rjpm � pmrj = ih̄�jm and obtain

[~L,HD] = ih̄c✏ijkpk↵j = ih̄c~↵⇥ ~p (133)

We introduce the spin operator.

~S =
1

2
h̄~⌃ =

1

2
h̄

0

@ ~� 0̂

0̂ ~�

1

A (134)

Since ~S obviously commutes with � we get

[~S,HD] =
1

2
h̄c

2

4

0

@ ~� 0̂

0̂ ~�

1

A

0

@ 0̂ ~p · ~�

~p · ~� 0̂

1

A�

0

@ 0̂ ~p · ~�

~p · ~� 0̂

1

A

0

@ ~� 0̂

0̂ ~�

1

A

3

5

=
1

2
h̄c

0

@ 0̂ [~�, ~p · ~�]

[~�, ~p · ~�] 0̂

1

A =
1

2
h̄c

0

@ 0̂ 2i~p⇥ ~�

2i~p⇥ ~� 0̂

1

A

= �ih̄c~↵⇥ ~p (135)

Thus, only the total angular momentum

~J = ~L+ ~S (136)

is conserved, i.e., [ ~J,HD] = 0.
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I. Plane waves

Look for solutions ' = 'pe
�ipµxµ/h̄, � = �pe

�ipµxµ/h̄ (recall that pµ = (E/c,�~p)). Thus

(E �mc
2)'p = c(~� · ~p)�p ,

(E +mc
2)�p = c(~� · ~p)'p . (137)

We see that, e.g., 'p can be chosen arbitrarily. Then from the second equation �p =

c(~� · ~p)'p/(E +mc
2). Substituting this into the first equation we observe that it is satisfied

if E2 = (mc
2)2 + c

2(~p)2. Thus the general solution looks like

 = Ne
�ipµxµ/h̄

0

BBB@

'p

c(~�·~p)
(E+mc2) 'p

1

CCCA
, (138)

where N is the normalisation constant. This representation is convenient for positive energy,
i.e. for E = +

p
(mc2)2 + c2(~p)2, as for |~p| ⌧ mc the lower part is much smaller than the

upper. However it can, in principle, be also used for E = �
p
(mc2)2 + c2(~p)2. If for the

normalisation one would require the density of particles to be equal 1/V , i.e., one particle in
volume V , one would use ⇢ =  † = 1/V . A simple calculation, assuming �p is normalised,
i.e., �†

p�p = 1, would give then N = 1p
V

q
E+mc2

2E . However this is not a Lorentz invariant

choice. The correct choice for E > 0 is  ̄ =  †
�
0 = 1/V . This gives N = 1p

V

q
mc2+E
2mc2 .

Alternatively, if we choose �p to represent a solution it will be

 = Ne
�ipµxµ/h̄

0

BBB@

c(~�·~p)
(E�mc2) �p

�p

1

CCCA
(139)

with N = 1p
V

q
mc2+|E|
2mc2 . This representation is convenient for negative energies.

It is convenient to choose the basis states to be eigenstates of the helicity ~p · ~⌃ (this
operator commutes with HD). This means to choose, e.g., 'p so that (~� · ~p)'p = ±|~p|'p.
These are NOT eigenstates of the spin as ~S does not commute with the Hamiltonian.

J. Prediction of antiparticles

Problem of negative energies. Dirac sea. Positrons as holes.
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K. Charge conjugation

Assume we have the wave function  (x) =  (t,~r), which solves the Dirac equation in a
given field Aµ(x): ⇣

�
µ
⇣
pµ �

q

c
Aµ

⌘
�mc

⌘
 = 0 (140)

We want to find a wave function  c which satisfies the same equation but with q ! �q.
Complex conjugating the Dirac equation we obtain

⇣
(�µ)⇤

⇣
�pµ �

q

c
Aµ

⌘
�mc

⌘
 ⇤ =

⇣
�(�µ)⇤

⇣
pµ +

q

c
Aµ

⌘
�mc

⌘
 ⇤ = 0 . (141)

Thus we have the minimal coupling combination
�
pµ +

q
c Aµ

�
with the opposite charge q !

�q. Assume the desired wave function is given by  c = UC ⇤ with UC being a (unitary)
matrix. Then we obtain

⇣
�(�µ)⇤

⇣
pµ +

q

c
Aµ

⌘
�mc

⌘
U

�1
C  c = 0 . (142)

We multiply by UC from the left:
⇣
�UC(�

µ)⇤U�1
C

⇣
pµ +

q

c
Aµ

⌘
�mc

⌘
 c = 0 . (143)

Thus our aim would be achieved if we would find UC such that

UC(�
µ)⇤U�1

C = ��µ . (144)

It is easy to see that UC = U
�1
C = i�

2 satisfies this condition. This has to do with the
fact that �0, �1, and �

3 are real whereas �2 is imaginary. This is specific for the Dirac
representation of the Dirac matrices. Thus we obtain

 c = i�
2 ⇤

. (145)

Consider now a stationary solution HD = E , where HD = c~↵ · ~p+ �mc
2, i.e., no field.

It is easy to show that  c corresponds to the opposite energy, i.e., HD c = �E c. This
follows from the fact that U

�1
C HDUC = �H

⇤
D.

L. Non-relativistic limit, Pauli Hamiltonian

We start with

ih̄
@'

@t
= c(~� · ~⇡)�+ q�'+mc

2
' ,

ih̄
@�

@t
= c(~� · ~⇡)'+ q���mc

2
� , (146)
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where ~⇡ ⌘ ~p� (q/c) ~A. Consider stationary case ih̄@/@t ! E and rewrite as

(E �mc
2 � q�)' = c(~� · ~⇡)� ,

(E +mc
2 � q�)� = c(~� · ~⇡)' . (147)

Consider the limit of small positive energies: E +mc
2 � q� ⇡ 2mc

2. That is E � q� �

mc
2 ⌧ mc

2. Since, classically, E = q�+c

p
(mc)2 + (~⇡)2, this limit corresponds to |~⇡| ⌧ mc

or v ⌧ c. Then from the second equation we obtain

� ⇡ (~� · ~⇡)'
2mc

(148)

Substituting to the first equation we obtain

(E �mc
2 � q�)' =

(~� · ~⇡)(~� · ~⇡)
2m

' (149)

We introduce Ẽ ⌘ E �mc
2 and obtain

Ẽ' =
(~� · ~⇡)(~� · ~⇡)

2m
'+ q�' (150)

Substituting ~⇡ ⌘ ~p� (q/c) ~A we obtain the Hamiltonian

H =

⇣
~� ·

⇣
~p� q

c
~A

⌘⌘⇣
~� ·

⇣
~p� q

c
~A

⌘⌘

2m
+ q� . (151)

We use (~� · ~C)(~� · ~D) = ~C · ~D+ i~� · ( ~C ⇥ ~D) where ~C and ~D can be orbital operators. This
gives

H =

⇣
~p� q

c
~A

⌘2

2m
+

i

2m
~� ·

h⇣
~p� q

c

~A

⌘
⇥
⇣
~p� q

c

~A

⌘i
+ q� . (152)

With ~p = �ih̄~r we obtain the Pauli Hamiltonian

H =

⇣
~p� q

c
~A

⌘2

2m
� h̄q

2mc

~B · ~� + q� . (153)

with the correct giro-magnetic ratio.
Indeed, introducing the Bohr magneton µB ⌘ eh̄

2mc and taking q = �e (we use e > 0) we
obtain the Zeeman term as

HZ = µB
~B · ~� = g

µB

h̄

~B · ~S , (154)
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where ~S ⌘ h̄~�/2 and g = 2. From the electrodynamics we know that the interaction of
a magnetic moment ~µ with the magnetic field reads H = �~µ · ~B. Thus, for the magnetic
moment of the electron we get ~µe = �(g/h̄)µB

~S.
To compare with the coupling of the magnetic field to the orbital angular momentum

~L ⌘ ~r ⇥ ~p we consider the Pauli Hamiltonian (153) in the regime of weak constant in space
and time magnetic field ~B. For such a magnetic field a convenient choice of the vector
potential is

~A(~r) =
1

2
~B ⇥ ~r . (155)

Then (since ~r · ~A = 0)
⇣
~p� q

c
~A

⌘2

2m
=

(~p)2

2m
� q

mc

~A · ~p+ q
2

2mc2
( ~A)2 . (156)

The middle term can be rewritten using

~A · ~p =
1

2

⇣
~B ⇥ ~r

⌘
· ~p =

1

2
(~r ⇥ ~p) · ~B =

1

2
~B · ~L . (157)

Thus, for the Pauli Hamiltonian we obtain

H =
(~p)2

2m
� q

2mc

~B · (~L+ 2~S) +
q
2

8mc2

⇣
~B ⇥ ~r

⌘2

. (158)

For a sufficiently weak magnetic field we can neglect the last term. We see that the spin
coupes to the magnetic field twice stronger than the orbital angular momentum.

1. Next order terms

The further expansion is frequently performed with the help of Foldy-Wouthuysen trans-
formation. The result reads

H =

⇣
~p� q

c
~A

⌘2

2m
� h̄q

2mc

~B · ~� + q�

� (~p )4

8m3c2
� qh̄

2

8m2c2
(~r · ~E) +

h̄q

8m2c2
~� · (~p⇥ ~E � ~E ⇥ ~p) . (159)

The three last terms are 1) the relativistic correction to the kinetic energy; 2) the Darwin
term; 3) the spin-orbit coupling.
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The spin-orbit term can be further analysed for the case of a central potential V (r) =

q�(r). For the electric field we obtain

q ~E = �q~r� = �q
~r

r

d�

dr
= �~r

r

dV

dr
. (160)

Then
q (~p⇥ ~E) = �(~p⇥ ~r)

1

r

dV

dr
= ~L

1

r

dV

dr
=

1

r

dV

dr

~L = �q ( ~E ⇥ ~p) . (161)

Thus, for the spin-orbit term we obtain

HSO =
1

2m2c2

1

r

dV

dr

~S · ~L . (162)

2. Density and current density in the non-relativistic limit

Investigate now the particle density and the current density . The density is given by
⇢ =  † = '

†
'+ �

†
�. As we see from Eq. (148) �†�

'†' ⇠ v
2
/c

2. Thus we obtain

⇢ ⇡ '
†
' (163)

For the current density we get

~j = c †
~↵ = c('†

~��+ �
†
~�') (164)

We substitute

� =
~� ·

h
(�ih̄~r� (q/c) ~A)'

i

2mc
, (165)

and

�
† =

h
(ih̄~r� (q/c) ~A)'†

i
· ~�

2mc
. (166)

Here, ~r remained on the left side of '†. Thus it was not transposed and the sign in front of
ih̄~r had to change.

We use ~� · (~� · ~a) = ~a� i(~� ⇥ ~a) and (~a · ~�) · ~� = ~a� i(~a⇥ ~�). This results in

~j = � ih̄

2m
('†(~r')� (~r'†)')� q

mc

~A'
†
'+

h̄

2m

h
~r⇥ ('†

~�')
i

(167)

The charge density and the electric current density are obtained as ⇢q = q ⇢, ~jq = q~j.
The last term of (167) is the spin related current, i.e., as if the electron was spinning

around. It does not contribute to the charge flow since ~r · (~r⇥ ...) = 0. The last term of
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(167) can be related to the spin-related magnetisation. Indeed, from the electrodynamics we
know that the magnetisation density ~M(t,~r) and charge current density (of bound charges)
are related via ~jq = c(~r⇥ ~M). Thus we can identify the spin related magnetisation density
~M = �(g/h̄)µB '

†~S' = �µB '
†
~�'. Everything becomes consistent with q = �e.

III. IDENTICAL PARTICLES

Particles are usually characterised by their position ~r and their spin projection (say on
z-direction) ms. If we are talking about particles of spin s, e.g., s = 0, s = 1/2, s = 1, the
quantum number ms takes values ms = �s,�s + 1, . . . , s � 1, s. So a wave function of a
single particle can be written as  (~r,ms). We can also think of it as a spinor with 2s + 1

components [ (~r,ms = s), (~r,ms = s� 1), . . . , (~r,ms = �s)]T , but here it would be more
convenient to think of it as a function of two arguments ~r and ms. A wave function of two
particles of the same kind would be then in general  (~r1,ms1,~r2,ms2). One frequently uses
an abbreviation

 (1, 2) ⌘  (~r1,ms1,~r2,ms2) . (168)

For N particles we would have in general

 (1, 2, . . . , N) ⌘  (~r1,ms1,~r2,ms2, . . . ,~rN ,msN) . (169)

The question is what happens with such a wave function if two particles are exchanged.
Formally we introduce a permutation operator P12 such that

P12 (1, 2) = P12 (~r1,ms1,~r2,ms2) ⌘  (2, 1) =  (~r2,ms2,~r1,ms1) . (170)

Analogously one can define Pmn echanging the particles m and n in a wave function with N

particles. Note, we exchange both the positions ~r1 $ ~r2 and the spin projections ms1 $ ms2.
It is argued that if the particles are identical and indistinguishable after exchange we

should get the same physical state, i.e.,

P12 (1, 2) =  (2, 1) = � (1, 2) . (171)

Here |�| = 1 so that the normalisation is kept. In 3D it is further argued that the only
two possibilities are � = ±1. This is because exchanging two particles twice is equivalent
to doing nothing, P 2

12 = 1, i.e. P12P12 (1, 2) =  (1, 2). Interestingly, in 2D the situation
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is not so simple, but we will not touch this issue here. The particles, for which � = +1 are
called bosons (Satyendra Nath Bose, 1894-1974), the particles, for which � = �1 are called
fermions (Enrico Fermi, 1901-1954).

In relativistic quantum field theory a very important theorem has been proven, the spin-
statistics theorem. It states that particles with integer spin are bosons and particles with
half-integer spin are fermions. Thus electrons (spin 1/2) are fermions.

A Hamiltonian describing many identical particles must commute with the permutation
(exchange) operator Pmn. If it does not, it would distinguish between the particles. So, for
example two interacting particles would be in general governed by a Hamiltonian of the type

H =
(~p1)2

2m
+

(~p2)2

2m
+ V (~r1) + V (~r2) + U(|~r1 � ~r2|) . (172)

Clearly P12 commutes with H. A legitimate Hamiltonian could also have spin-dependence,
e.g.,

H =
(~p1)2

2m
+

(~p2)2

2m
+ V (~r1) + V (~r2) + U(|~r1 � ~r2|) + J ~S1 · ~S2 . (173)

A. Non-interacting particles

A special and very important case is that of non-interacting particles. Let us for simplicity
consider two particles. The Hamiltonian has the form

H = H
(1)(1) +H

(1)(2) = H
(1)(~r1, ~p1, ~S1) +H

(1)(~r2, ~p2, ~S2) . (174)

The superscript (1) in H
(1) means a single particle Hamiltonian. For example

H
(1)(~r, ~p) = (~p)2/2m+ V (~r) . (175)

Assume H(1) has a set of eigenstates  n with energies En, i.e., H(1)
 n = En n. What are the

two-particle states? Let’s take first a pair of states  1 and  2. For distinguishable particles
we could construct four different states: 1)  1(1) 1(2) with energy E = 2E1, 2)  2(1) 2(2)

with energy E = 2E2, 3)  1(1) 2(2) with energy E = E1 + E2, 4)  2(1) 1(2) with energy
E = E1 + E2.

For indistinguishable particles the situation is different. For fermions the only possible
eigenstate is

 (1, 2) =
1p
2
( 1(1) 2(2)�  1(2) 2(1)) , E = E1 + E2 . (176)
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For bosons the following possibilities are available

 (1, 2) =  1(1) 1(2) , E = 2E1 ,

or

 (1, 2) =  2(1) 2(2) , E = 2E2 ,

or

 (1, 2) =
1p
2
( 1(1) 2(2) +  2(2) 1(1)) , E = E1 + E2 . (177)

Of course the pairs of states are arbitrary. We clearly observe the Pauli principle: two
fermions cannot be in the same state.

Consider now N particles. The situation is again very different for bosons and for
fermions. For bosons we can construct a state in which N1 particles are in state  1, N2

particles are in state  2 etc.. This state reads

|N1, N2, ...i =
✓
N1!N2! . . .

N !

◆1/2 X

P

 P1(1) P2(2) . . . PN (N) , (178)

where N = N1 + N2 + . . . is the total number of particles. The permutation P counts all
different arrangements of N1 numbers 1, N2 numbers 2 etc.

For fermions the wave functions must be antisymmetric. This means that the occupation
numbers are either 0 or 1, Ni = 0, 1. This is called Pauli principle. The wave function for
N particles occupying states i = 1, ..., N is given by

|11, 12, ..., 1Ni =
✓

1

N !

◆1/2 X

P

(�1)P P1(1) P2(2) . . . PN (N) , (179)

To fix the signs one chooses a certain order of states. For example, the permutation with P1 <

P2 < · · · < PN will be assigned the positive sign. This wave function can be conveniently
presented as a determinant of a matrix (Slater determinant). For example for 3 particles is
3 different states  1,  2,  3 the wave function reads

|11, 12, 13i =
r

1

3!

���������

 1(1)  2(1)  3(1)

 1(2)  2(2)  3(2)

 1(3)  2(3)  3(3)

���������

(180)
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B. Helium Atom

We now consider a helium atom with the nucleus with charge +Ze (Z = 2, e > 0) and
two electrons. The Hamiltonian of the two electrons reads

H =
(~p1)2

2m
+

(~p2)2

2m
� Ze

2

|~r1|
� Ze

2

|~r2|
+

e
2

|~r1 � ~r2|
. (181)

Let us first disregard the interaction between the electrons. More precisely we write H =

H0 + V , where
H0 =

(~p1)2

2m
+

(~p2)2

2m
� Ze

2

|~r1|
� Ze

2

|~r2|
(182)

and
V =

e
2

|~r1 � ~r2|
. (183)

The eigenstates of H0 can be constructed from the eigenstates of the single particle Hamil-
tonian (hydrogen atom):

H
(1) =

(~p)2

2m
� Ze

2

|~r| . (184)

These states are
 k,�(~r,ms) = �k(~r)��(ms) . (185)

Here k = (n, l,m) and � =", #. Choosing 2 different states k1, �1 and k2, �2 we can construct
the corresponding Slater determinant.

1. Ground state

The ground state of H0 corresponds to k1 = k2 = (1, 0, 0), �1 =", �2 =#. The ground
state wave function then reads

 gs(1, 2) = �1,0,0(~r1)�1,0,0(~r2) ·
1p
2
[�"(ms1)�#(ms2)� �#(ms1)�"(ms2)] . (186)

This state has the form of the Slater determinant, since we have 2 particles and 2 single-
particle states are involved. We also observe that this state has s symmetric orbital part
�1,0,0(~r1)�1,0,0(~r2) and an anti-symmetric spin part 1p

2
[�"(ms1)�#(ms2)� �#(ms1)�"(ms2)].

The spin part corresponds to a singlet state with total spin zero. The energy of the ground
state is given by

Egs0 = 2⇥
✓
�Z

2
Ry

12

◆
= �8Ry . (187)
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Here Ry ⌘ h̄2

2ma20
is the Rydberg constant and a0 =

h̄2

me2 is the Bohr radius. (In SI a0 = 4⇡✏0h̄2

me2 ).
We estimate the ground state energy of the full Hamiltonian H (181) using the first order

perturbation theory in V . This is not really justified, as V is not small. One can, first,
analyse a hypothetical situation in which V is multiplied by a small number ⌘ ⌧ 1, i.e.,
V = ⌘e

2
/|~r1 � ~r2|. Then, the perturbation treatment would probably be justified. Then we

put ⌘ = 1 and hope that the results remain correct at least qualitatively.
Thus we need

�Egs = h gs|V | gsi . (188)

Since the perturbation V does not act on the spin we obtain

�Egs =

Z
d
3
r1d

3
r2 �

⇤
100(~r1)�

⇤
100(~r2)

⌘e
2

|~r1 � ~r2|
�100(~r1)�100(~r2)

=

Z
d
3
r1d

3
r2 |�100(~r1)|2|�100(~r2)|2

⌘e
2

|~r1 � ~r2|
. (189)

A straightforward integration with

�100(~r) =
1p
⇡

✓
Z

a0

◆3/2

e
�Z|~r|/a0 (190)

gives
�Egs = 2Z ⇥ 5

8
⌘Ry =

5

2
⌘Ry . (191)

Thus we obtain
Egs =

✓
�8 +

5

2
⌘

◆
Ry . (192)

For ⌘ = 1 the correction is not really small, but it turns out to be rather close to the
experimental observations (we get Egs ⇡ �75eV, the experimental value E

exp
gs ⇡ �79eV).

We will not try to improve here (variational method introducing a wave function (190) with
Z ! Zeff ).

2. Excited states

To analyse the excited states it is important to notice that the continuum (ionisation)
starts already at E = �4Ry, when one electron is ionised (promoted to E=0) and the
second remains in the ground state. If we excite both electrons to n = 2, e.g., consider
a state with k1 = k2 = (2, 0, 0), its energy E = 2 ⇥ (�Z

2
Ry/22) = �2Ry is already
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above the threshold. Thus, one considers only the states, where k1 = (1, 0, 0) and k2 =

(n, l,m). The energy of all these states (with different choices of l, m, and spin projections)
is given by E = �4(1 + 1/n2)Ry. The degeneracy is 4n2: the usual n2 for all the possible
choices of l and m and another 4 for the spins. Indeed, if we fix l and m we still have
4 spin states. For distinguishable particles the 4n2 states would be  k1,�1(1) k2,�2(2) =

�100(~r1)��1(ms1)�nlm(~r2)��2(ms2), with �1 =" / # and �2 =" / #. Since n 6= 0, i.e., we have
no situation of both particles occupying the same single-particle state, each of these 4n2

states can be anti-symmetrised, producing 4n2 Slater determinants:

 k1,�1;k2,�2(1, 2) =
1p
2
[ k1,�1(1) k2,�2(2)�  k1,�1(2) k2,�2(1)]

=
1p
2
[�100(~r1)��1(ms1)�nlm(~r2)��2(ms2)� �100(~r2)��1(ms2)�nlm(~r1)��2(ms1)] .

(193)

Formally, in order to take into account the interaction term V we could use the degenerate
perturbation theory and diagonalise a 4n2 ⇥ 4n2 matrix. Fortunately, there are conserved
quantities which make the task much easier. Indeed, the whole Hamiltonian (181) commutes
with the total orbital angular momentum ~L = ~L1 + ~L2 = ~r1 ⇥ ~p1 + ~r2 ⇥ ~p2. Since k1 =

(1, 0, 0) and k2 = (n, l,m), we have ~L2 k1,�1;k2,�2 = h̄
2
L(L + 1) k1,�1;k2,�2 with L = l and

Lz k1,�1;k2,�2 = h̄M k1,�1;k2,�2 with M = m. This is so simple because one of the electrons
has zero angular momentum. Thus the perturbation does not mix states with different
values of l and m. For each choice of l and m we have to diagonalise a 4⇥ 4 matrix:

h k1,�1;k2,�2 | V
�� k1,�0

1;k2,�
0
2

↵
. (194)

A simple inspection shows that this matrix is not diagonal.
A better strategy is to realise that we have two spins 1/2 that can be added to either

spin S = 1 (triplet) or spin S = 0 (singlet). The perturbation would not mix different spin
states. Thus we consider the total spin ~S = ~S1 + ~S2 and construct the eigenstates of ~S2

(quantum number S) and Sz (quantum number Ms). These are

|S = 0,Ms = 0i = 1p
2
[�"(ms1)�#(ms2)� �#(ms1)�"(ms2)] =

|"#i � |#"ip
2

,

|S = 1,Ms = 1i = �"(ms1)�"(ms2) = |""i ,

|S = 1,Ms = 0i = 1p
2
[�"(ms1)�#(ms2) + �#(ms1)�"(ms2)] =

|"#i+ |#"ip
2

,

|S = 1,Ms = �1i = �#(ms1)�#(ms2) = |##i . (195)
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The first state (singlet) is anti-symmetric, whereas the three triplet states are symmetric.
Since the total wave function must be antisymmetric we should combine these spin states
with either symmetrized and anti-symmetrized orbital wave functions. We introduce

�A
k1,k2(~r1,~r2) =

1p
2
[�k1(~r1)�k2(~r2)� �k1(~r2)�k2(~r1)] , (196)

and
�S

k1,k2(~r1,~r2) =
1p
2
[�k1(~r1)�k2(~r2) + �k1(~r2)�k2(~r1)] . (197)

The proper 4 wave functions are then |k1, k2, S,Msi:

|k1, k2, 0, 0i = �S
k1,k2(~r1,~r2)

|"#i � |#"ip
2

,

|k1, k2, 1, 1i = �A
k1,k2(~r1,~r2) |""i ,

|k1, k2, 1, 0i = �A
k1,k2(~r1,~r2)

|"#i+ |#"ip
2

,

|k1, k2, 1,�1i = �A
k1,k2(~r1,~r2) |##i . (198)

States with S = 0 are called ”parahelium”, states with S = 1 - ”orthohelium”.
The perturbation V is diagonal in the basis |k1, k2, S,Msi. For S = 0 states one obtains

the energy correction
�ES=0 = Ik1,k2 + Jk1,k2 . (199)

For S = 1 one obtains
�ES=1 = Ik1,k2 � Jk1,k2 . (200)

Here

Ik1,k2 ⌘
Z

d
3
r1d

3
r2 �

⇤
k1(~r1)�

⇤
k2(~r2)

e
2

|~r1 � ~r2|
�k1(~r1)�k2(~r2)

=

Z
d
3
r1d

3
r2 |�k1(~r1)|2 |�k2(~r2)|2

e
2

|~r1 � ~r2|
, (201)

and
Jk1,k2 ⌘

Z
d
3
r1d

3
r2 �

⇤
k2(~r1)�

⇤
k1(~r2)

e
2

|~r1 � ~r2|
�k1(~r1)�k2(~r2) . (202)

The integral Ik1,k2 is called direct integral. The integral Jk1,k2 is called exchange integral.
If Jk1,k2 > 0 (usual case) the triplet states have lower energy than the singlet ones. In our
case (k1 = (1, 0, 0), k2 = (n, l,m)) both integrals depend only on n and l, not on m. Thus,
2l + 1 orbital degeneracy remains in addition to the 3-fold degeneracy of the S = 1 states.
The good quantum numbers are N = n, L = l, S.
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In the 4-dimensional subspace k1, k2 we obtain an effective spin Hamiltonian (exchange
interaction)

Hex = �Jk1,k2

2

✓
1 +

4

h̄
2
~S1 · ~S2

◆
. (203)

Indeed 2~S1 · ~S2 = (~S1 + ~S2)2 � ~S
2
1 � ~S

2
2 = ~S

2 � ~S
2
1 � ~S

2
2 = h̄

2(S(S + 1) � 3/2). We get
~S1 · ~S2 = �h̄

2
/4 for S = 0 and ~S1 · ~S2 = 3h̄2

/4 for S = 1.

IV. EXTRA READING

A. Parity operator in Dirac theory

In non-relativistic quantum mechanics parity operator is trivial:

P (~r, t) =  (�~r, t) (204)

States with orbital angular momentum l are eigenvectors of P and

PYlm(~r) = (�1)lYlm(~r) (205)

This is the orbital parity. The spin parity, i.e., how spin transforms under spatial inversion
~r ! �~r could be chosen arbitrarily. One could even choose P

2 = ±1 (consistent with
half-integer s). This choice would change nothing.

For relativistic quantum mechanics parity operator is more important (along with time
inversion T and charge conjugation C). The unitary linear operator P should possess the
following properties: P~rP

�1 = �~r and P~pP
�1 = �~p. For the Dirac equation to remain

form-invariant we should then choose P~�P
�1 = �~� and P�

0
P

�1 = �
0 (or P ~↵P

�1 = �~↵

and P�P
�1 = �). One of the possible choices is

P = �
0
Porb = �Porb , (206)

where Porb (~r) =  (�~r). Thus 4-spinors transform less trivially than in the non-relativistic
theory. The possible eigenvalues of P are ±1.
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B. Motion in spherically symmetric potential, hydrogen atom in Dirac theory

1. Eigenstates of J2, Jz, and P

We now study the case of spherically symmetric potential V (|~r|) = V (r). The Dirac
Hamiltonian then reads

HD = c~↵ · ~p+ �mc
2 + V (r) , (207)

We determine conserved quantities. These are the full angular momentum ~J and P . That
is [HD,

~J ] = 0 and [HD, P ] = 0.
Let us take the non-relativistic spherical spinors. These are eigenstates of J

2 and Jz

obtained by adding an orbital momentum l and spin 1/2. There are two possible values of j
then, namely j = l± 1/2. Except when l = 0 there is only one possibility j = l+1/2 = 1/2.
The states are

⌦j=l±1/2,m(✓,�) =

0

BBB@

±
q

l±m+(1/2)
2l+1 Yl,m�1/2(✓,�)

q
l⌥m+(1/2)

2l+1 Yl,m+1/2(✓,�)

1

CCCA
(208)

We invert the logic and say that we obtain j from either l = j � 1/2 or from l = j + 1/2

and denote these spinors as ⌦j,m;l=j±1/2. Then the eigenvectors of J2, Jz, and P read
0

@ '(r, ✓,�)

�(r, ✓,�)

1

A =

0

@ f(r) · ⌦j,m;l=j�/2

g(r) · ⌦j,m;l=j+/2

1

A , (209)

where  can take two values  = ±1. Indeed in this case we obtain

J
2

0

@ '

�

1

A =

0

@ h̄
2
j(j + 1)'

h̄
2
j(j + 1)�

1

A (210)

Jz

0

@ '

�

1

A =

0

@ h̄m'

h̄m�

1

A (211)

and

P

0

@ '

�

1

A = �Porb

0

@ '

�

1

A =

0

@ Porb'

�Porb�

1

A =

0

@ (�1)j�/2
'

�(�1)j+/2
�

1

A = ±

0

@ '

�

1

A (212)
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2. Dirac equation for a given j

The Dirac equation reads

(E �mc
2 � V )' = c(~� · ~p)� ,

(E +mc
2 � V )� = c(~� · ~p)' . (213)

We need, e.g., (~� · ~p)�. We obtain

(~� · ~p)� = r
�2(~� · ~r)(~� · ~r)(~� · ~p)� = r

�2(~� · ~r)(~r · ~p+ i~� · ~L)� (214)

We use h̄~� · ~L = (~L + (h̄/2)~�)2 � L
2 � 3h̄2

/4 = h̄
2[j(j + 1) � l(l + 1) � 3/4]. Since for

� = g(r) · ⌦j,m;l=j+/2 we obtain

(~� · ~L)� = �h̄[(j + 1/2) + 1]g(r) · ⌦j,m;l=j+/2 (215)

On the other hand the operator ~r~p acts only on g(r) as

(~r~p)g(r) = �ih̄r
@g

@r
(216)

Finally (without proof) r
�1(~� · ~r)⌦j,m;l=j+/2 = �⌦j,m;l=j�/2 (for  = ±1, Landau-

Lifschitz get here an extra i due to a different definition of Ylm).
Thus

(~� · ~p)� = ih̄r
�1

⇢
r
@g

@r
+ [(j + 1/2) + 1]g(r)

�
· ⌦j,m;l=j�/2 (217)

and
(~� · ~p)' = ih̄r

�1

⇢
r
@f

@r
� [(j + 1/2)� 1]f(r)

�
· ⌦j,m;l=j+/2 (218)

The Dirac equation now reads

(E �mc
2 � V )f = ich̄

⇢
@g

@r
+

1

r
[(j + 1/2) + 1]g

�
,

(E +mc
2 � V )g = ich̄

⇢
@f

@r
� 1

r
[(j + 1/2)� 1]f

�
. (219)

for G ⌘ �irg and F ⌘ rf this becomes

(E �mc
2 � V )F = �ch̄

⇢
@G

@r
+
(j + 1/2)G

r

�
,

(E +mc
2 � V )G = ch̄

⇢
@F

@r
� (j + 1/2)F

r

�
. (220)
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3. Hydrogen atom

For V = �Ze
2
/r we obtain

(E �mc
2)F = �ch̄

⇢
@G

@r
+
(j + 1/2)G+ Z↵F

r

�
,

(E +mc
2)G = ch̄

⇢
@F

@r
� (j + 1/2)F + Z↵G

r

�
, (221)

where ↵ ⌘ e
2
/(h̄c) ⇡ 1/137 is the fine structure constant (in SI ↵ ⌘ e

2
/(4⇡✏0h̄c)).

We are looking for bound states, i.e., E < mc
2. Thus we introduce ⇢ ⌘

r
p
m2c4 � E2/(h̄c). Then the equations read

r
mc2 � E

mc2 + E
F =

⇢
@G

@⇢
+

Z↵F + (j + 1/2)G

⇢

�
,

r
mc2 + E

mc2 � E
G =

⇢
@F

@⇢
� Z↵G+ (j + 1/2)F

⇢

�
. (222)

Introduce A ⌘
q

mc2�E
mc2+E , B ⌘ Z↵, C ⌘ (j + 1/2). Then

AF =

⇢
@G

@⇢
+

BF + CG

⇢

�
,

1

A
G =

⇢
@F

@⇢
� BG+ CF

⇢

�
. (223)

We now use an ansatz:

F = ⇢
s
e
�⇢

1X

m=0

Fm⇢
m
, (224)

G = ⇢
s
e
�⇢

1X

m=0

Gm⇢
m
. (225)

Substituting we obtain the following recurrence relations for m � 0:

AFm�1 = (s+m+ C)Gm �Gm�1 +BFm ,

A
�1
Gm�1 = (s+m� C)Fm � Fm�1 � BGm . (226)

For m = 0 this gives

(s+ C)G0 +BF0 = 0 and (s� C)F0 � BG0 = 0 (227)

which means
s = ±

p
C2 � B2 = ±

p
(j + 1/2)2 � Z2↵2 (228)
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The minimum value of j is 1/2. Thus everything OK if Z↵ < 1, i.e., if Z < 137. Then we
take the positive root so that the wave functions vanish at r = 0.

s =
p

(j + 1/2)2 � Z2↵2 (229)

For Z > 137 interesting things happen but we will not consider this case.
The eigenvectors are found from the condition that for some value of m = n

0
Fn0+1 =

Gn0+1 = 0, whereas Fn0 6= 0 and Gn0 6= 0. Then both of Eq. (226) give for m = n
0 + 1

AFn0 = �Gn0 . (230)

Now we use Eq. (226) give for m = n
0. Eliminating Gn0�1 and Fn0�1 and using (230) we

obtain
2(s+ n

0) = �B(A� A
�1) (231)

This equation gives
E =

mc
2

q
1 + Z2↵2

(s+n0)2

(232)

The allowed values of n0 are 0, 1, .... For n
0 = 1, 2... one can choose arbitrary j (positive

and half-integer) and arbitrary parity (). For n
0 = 0 there is an extra condition. As one

can conclude from (227) and (230) we must have C > 0, i.e.,  = +1.

4. The results

Principal quantum numbers: n = n
0 + j + 1/2.

For a given n possible values of j are j = 1/2, 3/2, ..., n�1/2. As one can see j = n�1/2

corresponds to n
0 = 0. Thus for all values of j < n� 1/2 the states are double-degenerate,

but for j = n � 1/2 only  = +1 is allowed. For each j < n � 1/2 there are two values of
. One names the states by the l value of ', i.e., by l = j � /2. For j = n� 1/2 only one
value of l is allowed l = j � 1/2, i.e.,  = 1.

The states are named as nlj, where l = j± 1/2, except for j = n� 1/2 when l = j� 1/2.
The first states are 1s1/2, 2s1/2, 2p1/2, 2p3/2 etc.
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The energy is given by

Enj = mc
2


1 +

Z
2
↵
2

(n� ✏j)2

�� 1
2

, (233)

✏j = j +
1

2
�

s✓
j +

1

2

◆2

� Z2↵2 . (234)

For given n the energy increases with j. The only degeneracy left is between l = j ± 1/2.
So the states 2s1/2 and 2p1/2 are degenerate. This degeneracy is lifted by the radiative
corrections (Lamb shift).

V. LITERATURE

1) L.D. Landau & E.M. Lifschitz, Lehrbuch der theoretischen Physik,
Band 3: Quantenmechanik,
Band 4: Quantenelektrodynamik.

2) T. Fließbach, Lehrbuch zur Theoretischen Physik,
Band III: Quantenmechanik.

3) A. Messiah, Quantum Mechanics.

4) J. D. Bjorken, S. D. Drell, Relativistic Quantum Mechanics.

5) J. J. Sakurai, J. Napolitano, Modern Quantum Mechanics.

6) C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantenmechanik: Band 2, Band 3.

46


