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I. INTRODUCTION

This course will consist of two parts:
1) The first, smaller part will be about axiomatic thermodynamics. This is a closed and

very sucsessful theory based on a few axioms (Laws of Thermodynamics).
2) The main part will be statistical physics, which provides the justification for the first

part.

II. THERMODYNAMICS

A. Definitions

The thermodynamic systems have a very large number of degrees of freedom. The typical
number is the Avogadro number NA ⇡ 6.023 ⇥ 1023 particles per mole. Frequently one is
interested in the so called thermodynamic limit. In this limit the number of particles N ! 1

and the volume V ! 1, but the density N/V remains constant.
The state of the system in thermodynamics is characterised by several macroscopic state

functions (or state variables). One distinguished extensive and intensive state functions.
The extensive ones are proportional to the number of particles / N , the intensive ones
/ N0.

Extensive: Volume V , number of particles N , internal energy U , entropy S / N .
Intensive: Pressure P , temperature T , chemical potential µ / N0.
Equations of state describe equilibrum. They connect several state functions/variales.

Example: in an ideal monoatomic gas the following equations hold PV = NkBT , U =

3
2NkBT . Here kB ⇡ 1.38⇥ 1023J/K is the Boltzmann constant.

B. Laws of thermodynamics

1. Zeroth law

There exists an intensive state variable called ”temperature”. Two systems at equilibrium
with each other have equal temperatures.
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2. First law

Conservation of energy (Robert Mayer, 1814-1878)

dU = �Q� �W + µdN . (1)

Here �Q is the differential of heat flowing into the system. It is not a total differential,
therefore we use � and not d. That is heat is not a state function. Similarly �W is the
differential of work performed by the system. In case of gas expanding mechanically �W =

PdV . Also work is not a state function. However, the inner energy U and the number of
particles N are state functions. We have also introduced the chemical potential µ. This is
amount of energy needed to add one particle to the system provided no heat transfer and
no work performed.

3. Second law

There is no thermodynamic change of state, the only effect of which is that
(I) an amount of heat is removed from a heat reservoir and fully converted into work.
(Ii) an amount of heat is removed from a colder heat reservoir and transferred to a warmer

heat reservoir.

C. Carnot Process

The following reversible cycle is performed:
1. The system is in thermal contact with the reservoir T2. In an isothermic process (e.g.

expansion of the gas), the heat Q2 flows into the system.
2. The system is thermally insulated. During an adiabatic process (e.g. further expan-

sion) the temperature drops from T2 to T1.
3. The system is in thermal contact with the reservoir T1. In an isothermic process (e.g.

compression of the gas), the heat Q1 flows out of the system.
4. The system is thermally insulated. During an adiabatic process (e.g. further compres-

sion) the temperature rises from T1 to T2.
The first law tell us that the amount of work performed by the Carnot machine is given
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by

�W = |Q2|� |Q1| = Q2 +Q1 . (2)

The efficiency (energy conversion efficiency) is then given by

⌘ ⌘ �W

|Q2|
= 1� |Q1|

|Q2|
. (3)

Carnot theorem: for given temperatures T2 and T1 the efficiency of the Carnot machine
is maximal possible.

D. Entropy

For the Carnot process we get

Q1

T1
+

Q2

T2
= 0 . (4)

Reminder: the sign of the amount of heat Q depends on whether if flows into the system
(> 0) or out of the system (< 0). For the usual direction of the Carnot process (T2 > T1,
heat is partially transformed into work) we have Q2 > 0 and Q1 < 0.

An arbitrary reversible cyclic process can be presented as a combination of many Carnot
processes, therefore

I
�Q

T
= 0 . (5)

Thus we can introduce a new state variable called entropy (this is the most important
object in thermodynamics and statistical physics). It is usually denoted by S. The (total)
differential of the entropy (for a reversible process) is given by

dS =
�Q

T

���
revers.

. (6)

For irreversible processes
I
�Q

T
< 0 , (7)

as follows from Carnot theorem, i.e., in a machine which is not reversible Q1

T1
+ Q2

T2
< 0. In

Fig. 1 the Carnot process is shown in the (S,T ) coordinates.
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FIG. 1: Carnot process in (S,T ) coordinates.

E. Fundamental relation of thermodynamics

We use �Q = TdS (for reversible processes). Then the first law reads

dU = �Q� PdV + µdN = TdS � PdV + µdN . (8)

We find for the differential of the entropy

dS =
1

T
dU +

P

T
dV � µ

T
dN . (9)

From this we observe that S should be considered a function of U, V,N , i.e.

S = S(U, V,N) (10)

For the partial derivatives Eq. 9 gives

1

T
=
@S

@U

���
V,N

,
P

T
=
@S

@V

���
U,N

,
µ

T
= � @S

@N

���
U,V

. (11)

For irreversible processes dS > �Q

T
, i.e., dS > 1

T
dU + P

T
dV � µ

T
dN . Thus, for fixed U, V,N

the entropy is maximal in equilibrium.
This should be understood as follows. Assume the entropy depends not only on U, V,N

but also on some other parameters (see, e.g., the discussion of the thermodynamic stability
in Section II H). The equilibrium corresponds to maximisation of the entropy with respect
to these other parameters with fixed U,N, V . In equilibrium the other parameters will take
the optimal values, which depend on U, V,N . Thus, the equilibrium entropy is a function of
U, V,N only.
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1. Euler equation

Since the entropy is a function of extensive variables only and is also itself extensive we
have

S(�U,�V,�N) = �S(U, V,N) . (12)

This gives

d

d�
(�S) = S =

d

d�
S(�U,�V,�N)

�!1
=

@S

@U
U +

@S

@V
V +

@S

@N
N . (13)

Substituting (11) we get

ST = U + PV � µN (14)

F. Thermodynamic potentials

Thermodynamic potential is an extensive state function expressed via its natural (con-
trolled) variables. All other state functions can be found by differentiating the thermody-
namic potential with respect to the controlled variables.

1. Internal Energy

Internal energy is the first example of a thermodynamic potential. To understand which
variables are the natural (controlled) ones we use again

dU = TdS � PdV + µdN . (15)

We observe that the natural variables for U are S, V,N . That is we just invert the function
S(U, V,N) with respect to U and obtain

U = U(S, V,N) (16)

Then for the partial derivatives Eq. 15 gives

T =
@U

@S

���
V,N

, P = �@U
@V

���
S,N

, µ =
@U

@N

���
S,V

. (17)

For irreversible processes dU < TdS � PdV + µdN . Thus, for fixed S, V,N the internal
energy U is minimal.
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Since dU is a total differential, we obtain the Maxwell relations. For example

@T

@V

���
S,N

=
@

@V

✓
@U

@S

���
V,N

◆

S

= �@P
@S

���
V,N

=
@

@S

✓
@U

@V

���
S,N

◆

V

. (18)

2. Helmholtz free energy

The internal energy is inconvenient since it depends on entropy, which is hardly con-
trollable. Thus one performs a Legendre transformation with respect to the pair S, T and
defines the free energy as

F = U � TS . (19)

With the help of the Euler equation we also obtain F = �PV + µN . Differentiating
F = U � TS we obtain

dF = �SdT � PdV + µdN . (20)

Thus, the natural variables for the free energy are T, V,N :

F = F (T, V,N) (21)

All three variables can be controlled in experiment, therefore the free energy is very useful
as a thermodynamic potential. For the partial derivatives Eq. 20 gives

S = �@F
@T

���
V,N

, P = �@F
@V

���
T,N

, µ =
@F

@N

���
T,V

. (22)

For fixed T, V,N the free energy F is minimal.

3. Enthalpy

Enthalpy is frequently used in chemistry because in chemical reactions the pressure and
not the volume is usually controlled. Enthalpy is obtained from the internal energy by a
Legendre transformation with respect to the pair P, V :

H = U + PV . (23)

Differentiating we obtain

dH = TdS + V dP + µdN . (24)
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Thus, the natural variables for the entalpy are S, P,N :

H = H(S, P,N) (25)

For the partial derivatives Eq. 24 gives

T =
@H

@S

���
P,N

, V =
@H

@P

���
S,N

, µ =
@H

@N

���
S,V

. (26)

For fixed S, P,N the enthalpy H is minimal.

4. Gibbs free enthalpy

The free enthalpy is even more important and used in chemistry. It is obtained from the
enthalpy exactly as free energy from the internal energy by a Legendre transformation with
respect to the pair S, T :

G = H � TS = U + PV � TS = F + PV . (27)

Differentiating we obtain

dG = �SdT + V dP + µdN . (28)

Thus, the natural variables for the free enthalpy are T, P,N :

G = G(T, P,N) (29)

For the partial derivatives Eq. 28 gives

T = �@G
@S

���
P,N

, V =
@G

@P

���
T,N

, µ =
@G

@N

���
T,V

. (30)

For fixed T, P,N the free enthalpy G is minimal.

5. Grand potential

Another very useful thermodynamic potential

⌦ = F � µN = U � TS � µN . (31)

d⌦ = �SdT � PdV �Ndµ . (32)
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⌦ = ⌦(T, V, µ) (33)

For the partial derivatives Eq. 32 gives

S = �@⌦
@T

���
V,µ

, P = �@⌦
@V

���
T,µ

, N = �@⌦
@µ

���
T,V

. (34)

G. Response functions

Heat capacitance. The influx of heat into a system usually causes an increase of
temperature. The latter depends, of course, on whether the volume or the pressure is
controlled (fixed). This is because part of the heat can go to work. The heat capacitance C

is the proportionality coefficient in

�Q = CdT . (35)

Since, on the other hand �Q = TdS we obtain

Cx ⌘ T

✓
@S

@T

◆

x

, (36)

where x can be either V or P .
For V = const. one obtains

S = �@F
@T

���
V,N

! CV = �T

✓
@2F

@T 2

◆ ���
V,N

. (37)

For P = const. one obtains

S = �@G
@T

���
P,N

! CP = �T

✓
@2G

@T 2

◆ ���
P,N

. (38)

An alternative way to calculate the heat capacitance is to say that for fixed V,N we have
�Q = dU . Thus

CV =
@U

@T

���
V,N

. (39)

This, however, requires expressing the inner energy U in ”unnatural coordinates” U(T, V,N).
For this one uses the relation T = @U

@S

���
V,N

= T (S, V,N). Inverting with respect to S one gets
S = S(T, V,N). Finally U(T, V,N) = U(S(T, V,N), V,N). Frequently the inner energy is
given in ”unnatural” coordinates, e.g., U = 3

2NkBT for an ideal monoatomic gas.
Similarly

CP =
@H

@T

���
P,N

. (40)
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H. Thermodynamic stability

FIG. 2: Two subsystems A and B isolated from the rest of the world and connected by a movable,

thermally conducting and permeable wall.

Consider two subsystems A and B isolated from the rest of the world and connected by
a movable, thermally conducting and permeable wall (Fig. 2). The total entropy is the sum
S = SA(UA, VA, NA) + SB(UB, VB, NB). Here we assumed that each subsystem is in its own
equilibrium, but the combined system not necessarily and the total entropy depends not
only on U = UA + UB, V = VA + VB, N = NA +NB. Varying these parameters we obtain

dS = dSA + dSB =
@SA

@UA

���
VA,NA

dUA +
@SB

@UB

���
VB ,NB

dUB

+
@SA

@VA

���
UA,NA

dVA +
@SB

@VB

���
UB ,NB

dVB

+
@SA

@NA

���
UA,VA

dNA +
@SB

@NB

���
UB ,VB

dNB . (41)

Since U = UA + UB = const. we have dUA = �dUB. In equilibrium the entropy must be
maximal, i.e. dS = 0. Therefore

@SA

@UA

���
VA,NA

=
@SB

@UB

���
VB ,NB

! 1

TA

=
1

TB

! TA = TB . (42)

Similarly from V = VA + VB = const. follows

@SA

@VA

���
UA,NA

=
@SB

@VB

���
UB ,NB

! PA

TA

=
PB

TB

! PA = PB . (43)

Finally, since N = NA +NB = const. we get

@SA

@NA

���
UA,VA

=
@SB

@NB

���
UB ,VB

! µA

TA

=
µB

TB

! µA = µB . (44)

The condition dS ensures only that the entropy has an extremum. To have a maximum
we should ensure that the ”second differential” is negative. Varying the internal energies
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(with VA/B and NA/B fixed) we obtain

d(2)S =
1

2

X

i=A,B

@2Si

@U2
i

(dUi)
2 = � 1

2T 2

X

i=A,B

@Ti

@Ui

(dUi)
2 (45)

Thus, from d(2)S < 0 follows

CV =

✓
@U

@T

◆

V,N

> 0 . (46)

Since

CV = �T

✓
@2F

@T 2

◆

V,N

> 0 , (47)

we conclude that the free energy must be a convex functions, i.e., (@2F/@T 2)V,N < 0.

I. Mixing entropy and Gibbs paradox

We postulate here the expression for the entropy of an ideal gas (this is exactly the task
of the statistical physics to provide such expressions):

S(U, V,N) = Ns0 +NkB ln

 
V

N

✓
U

N

◆ f
2

!
. (48)

Here s0 is some constant, f is the number of degrees of freedom per molecule, e.g., f = 3

for a mono-atomic gas. This expressions produces the well-known equations of state for an
ideal gas:

✓
@S

@V

◆

U,N

=
P

T
! PV = NkBT ,

✓
@S

@U

◆

V,N

=
1

T
! U =

f

2
NkBT . (49)

Consider now two containers with volumes V1 and V2 filled with two distinct gases (Fig. 3).
Assume also the gases have the same temperature T . If we remove the wall between the
containers both gases expand to volume V = V1 + V2 but keep their internal energies in
accordance with U = f

2 NkBT . The entropy change of each of the gases is then given by

�Si = NikB ln
V

Vi

, i = 1, 2 . (50)

Thus we obtain a positive entropy of mixing �S = �S1 +�S2 > 0.
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FIG. 3: Two gas containers with volumes V1 and V2.

Consider now identical gases in two containers. Assume also that before removing the
wall the density, the temperature and the pressure were the same. Namely

V1

N1
=

V2

N2
=

V

N
,

U1

N1
=

U2

N2
=

U

N
. (51)

Here U ⌘ U1 + U2 and N ⌘ N1 + N2. Under these conditions removing the wall does not
change the state, thus the entropy should not change. On the other hand, if we consider
separately the gas particles that were initially in V1, an expansion took place and the entropy
should grow as before �S = �S1 +�S2 > 0. This is Gibbs paradox. Of course, the correct
answer is �S = 0. To explain one has to take into account that the particles are identical.

III. FOUNDATIONS OF STATISTICAL PHYSICS

A. Classical mechanics of N particles

The state of N particles is described by a point is a 6N dimensional phase space (3N
coordinates and 3N momenta):

x = (p,q) = (p1, . . . , p3N , q1, . . . , q3N) . (52)

The dynamics is governed by the Hamilton function H(p,q). The equations of motion read

ṗj = �@H
@qj

, q̇j =
@H

@pj
. (53)

Thus, the phase space velocity (ṗ, q̇) is an unambiguous (single valued) function of the
position in the phase space (p,q). One obtains a velocity field in the phase space. This,
in particular, means that the trajectories in the phase space never cross (see Fig. 4). Cer-
tain restrictions are placed by the conservation laws. So, for the example, the energy is

15

Me

#



FIG. 4: Velocity field in the phase space.

conserved. Thus we might consider only the trajectories corresponding to a given energy
E, i.e., H(p,q) = E. This would be still a 6N � 1 dimensional space. Sometimes other
quantities are also conserved, e.g., total momentum or total angular momentum.

B. Gibbs distribution

One considers an ensemble of equivalent systems characterised by the distribution func-
tion ⇢(x, t). The physical meaning is as follows: one introduces an infinitesimal volume
element in the phase space dx. Then ⇢(x, t)dx is the probability that the state of the system
is described by a point of the phase space inside of dx. Obviously, the distribution should
be normalised:

R
dx⇢(x) = 1. If we have an observable quantity O(x) = O(qj, pj) the Gibbs

distribution allows calculating the expectation value of O:

Ō(t) =

Z
dx ⇢(x, t)O(x) . (54)

It is sometimes convenient to define dx with a normalisation factor

dx = CNd
3Nq d3Np , (55)

so that dx and ⇢(x, t) become dimensionless. Once we consider the classical case as a limit of
the quantum description, we observe (see below) that the natural choice is CN = (2⇡h̄)�3N .

1. Justification of the normalisation factor CN = (2⇡h̄)�3N

.
Consider free quantum particles in a box with dimensions Lx, Ly, Lz, volume V =

LxLyLz. The wave functions are plane waves

 p(r) =
1p
V

exp


i

h̄
pr

�
. (56)
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To take into account the finite size of the box it is convenient to assume the periodic boundary
conditions

 p(r+ Lxex) =  p(r) (57)

and similarly for Ly and Lz. Then, the allowed momenta are given by

(px, py, pz) =

✓
2⇡h̄nx

Lx

,
2⇡h̄ny

Ly

,
2⇡h̄nz

Lz

◆
, (58)

where nx, ny, nz are integer numbers.
We count the quantum states of one particle (with some condition), introduce dpx =

2⇡h̄/Lx, . . . and transform to an integral
X

nx,ny ,nz

=
LxLyLz

(2⇡h̄)3

Z
dpxdpydpz =

Z
dxdydzdpxdpydpz

(2⇡h̄)3
. (59)

C. Liouville equation

The aim is to derive an equation of motion for ⇢(x, t), i.e., we want to calculate @⇢(x,t)
@t

.
The partial derivative means that we fix the point in the phase space x and follow the
evolution of the ⇢ in time. However we can think of our chosen point x as point reached at
time t by a phase space trajectory x(t), i.e., x = x(t). At the initial time t0 this trajectory
was at x0 = x(t0). Obviously the probability density to be at x at time t is equal to the
probability density to be at x0 at time t0. More precisely we should equate the probabilities

⇢(x, t)dxt = ⇢(x0, t0)dxt0 , (60)

and use the Liouville theorem stating that the volume element is conserved dxt = dxt0 . Thus
we obtain

⇢(x, t) = ⇢(x(t), t) = ⇢(x0, t0) . (61)

We differentiate with respect to t and obtain

d

dt
⇢(x(t), t) =

@⇢(x, t)

@t
+

dx

dt
· ~r⇢(x, t) = 0 . (62)

Explicitly in coordinates we get

@⇢

@t
+
X

j

dqj
dt

@⇢

@qj
+
X

j

dpj
dt

@⇢

@pj
= 0 . (63)
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Using the Hamiltonian equations of motion we obtain

@⇢

@t
+
X

j

@H

@pj

@⇢

@qj
�
X

j

@H

@qj

@⇢

@pj
= 0 . (64)

Finally, this gives the Liouville equation

@⇢

@t
= {H, ⇢} , (65)

where {. . . } denote the Poisson brackets. In particular, it is now easy to show, that if
⇢(q,p) = ⇢(H((q,p))), then @⇢/@t = 0.

D. Microcanonical ensemble, ergodic hypothesis

It is convenient to introduce the volume of the phase space corresponding to energies
smaller than some chosen energy E:

⌦(E) =

Z
dx ✓(E �H(x)) . (66)

We define the 6N � 1 dimensional ”surface area” of this volume

⌃(E) =
d⌦(E)

dE
=

Z
dx �(E �H(x)) . (67)

Then ⌃(E)dE is the ”number of states” of the system with energies E < H(x) < E + dE.
In the statistical physics one postulates the Gibbs distribution of a ”microcanonical en-

semble”, which describes an isolated physical system (a system with a given energy) in
equilibrium:

⇢(x)eq =
1

⌃(E)dE
, for E < H(x) < E + dE

⇢(x)eq = 0 , otherwise (68)

That is one takes a small interval of energies and postulates that all ”states” in this interval
have equal probabilities to be realised. This distribution is stationary in time, since it can
be presented as ⇢(H(x)).

A expectation value of a physical observable O(x) in the microcanonical ensemble reads

ŌE =
1

⌃(E)dE

Z

E<H(x)<E+dE

dxO(x) . (69)
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Consider a trajectory in the phase space x(t), such that H(x(t)) = E. One can calculate
a time average of the observable O on this trajectory over long (infinite) time T :

ŌT = lim
T!1

1

T

TZ

0

O(x(t)) . (70)

The ergodic hypothesis states:

ŌE = ŌT . (71)

E. Entropy (classical)

One defines (postulates) entropy to be

S = �kB

Z
dx ⇢(x) ln ⇢(x) . (72)

It is an additive quantity. Namely, if we have two independent subsystems A and B, the
phase space is a direct product of two phase spaces x = (xA, xB). If the two are not correlated
the Gibbs distributions of the combined system is given by

⇢(x) = ⇢A(xA)⇢B(xB) . (73)

Then

S = �kB

Z
dxAdxB⇢A(xA)⇢B(xB) [ln ⇢A(xA) + ln ⇢B(xB)] = SA + SB . (74)

For the microcanonical Gibbs distribution (68) we readily obtain

S = kB ln [⌃(E)dE] . (75)

For large number of particles N one can approximately replace the volume of the energy
window dE, i.e., ⌃(E)dE by the volume of the whole sphere H(x) < E. Thus we use

S = kB ln [⌃(E)dE] ⇡ kB ln [⌦(E)] . (76)

The justification for this approximation is as follows: at least for non-interacting particles
the volume ⌦(E) / EaN , where a is a number of order 1. For example for non-relativistic
particles with dispersion relation p

2/2m one obtains a = 3/2 (see below). Then, ⌃(E) /

aNEaN�1. We thus have ln[⌦(E)] / aN lnE, whereas ln[⌃(E)] / (aN � 1) lnE + ln(aN).
For N ⇡ 1023 the leading term aN lnE clearly dominates.
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F. Ideal classical gas (Maxwell-Boltzmann gas)

1. Entropy of M.-B. gas

We consider N identical particles in volume V . The Hamilton function reads

H =
NX

j=1

p
2
j

2m
. (77)

For the volume ⌦(E) in the phase space we obtain

⌦(E) =

Z
dx ✓(E �H(x)) = V N

Z
d3Np

(2⇡h̄)3N
✓

 
E �

NX

j=1

p
2
j

2m

!
. (78)

The integral corresponds to the volume of a 3N -dimensional sphere (in the p space) with
the radius of

p
2mE. We use the well known mathematical formula for the volume of an

N -dimensional sphere with radius R

VN(R) =
⇡

N
2 RN

�
�
N

2 + 1
� , (79)

which gives

⌦(E) = V N
1

�
�
3N
2 + 1

�
✓

mE

2⇡h̄2

◆ 3N
2

(80)

Here �(. . . ) is the Gamma-function defined as

�(z) ⌘
1Z

0

tz�1e�t dt . (81)

The important properties of these function are �(1) = 0 and �(z+1) = z�(z), which means
�(n) = (n � 1)! for n being a positive integer. We will also need the Stirling formula for
large N :

N ! ⇡ 2⇡
p
N

✓
N

e

◆N

. (82)

We will need only the logarithm of N !, which gives

lnN ! ⇡ N ln(N/e) +O(lnN) . (83)

Clearly the last term can be omitted for N ⇠ 1023.
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Finally, we identify the inner energy with E, i.e., U = E. Calculating the entropy with
Eq. 80 we would get

S(U, V,N) = kB ln [⌦(E)] = kBN ln

"
V e

3
2

✓
mU

3⇡h̄2N

◆ 3
2

#
(84)

Although this result would produce the correct equations of state, it is not satisfactory
because the function S(U, V,N) is not extensive, S(�U,�V,�N) 6= �S(U, V,N). We would
also not be able to solve the Gibbs paradox.

Instead we invoke our knowledge from the quantum mechanics about the identical parti-
cles. If the volume ⌦(E) should represent the number of quantum states, then for identical
particles it has to be divided by N ! in order to take into account the permutations corre-
sponding to the same quantum state. Thus we define

⌦̃(E) =
⌦(E)

N !
=

V N

N !

1

�
�
3N
2 + 1

�
✓

mE

2⇡h̄2

◆ 3N
2

. (85)

For the entropy this gives

S(U, V,N) = kB ln
h
⌦̃(E)

i
= kBN ln

"
V

N
e

5
2

✓
mU

3⇡h̄2N

◆ 3
2

#
(86)

This function is extensive, i.e., S(�U,�V,�N) = �S(U, V,N).

2. Equations of state

Using

1

T
=
@S

@U

���
V,N

(87)

we obtain 1/T = kBN(3/2)(1/U). This gives

U =
3

2
NkBT . (88)

Similarly, using

P

T
=
@S

@V

���
U,N

(89)
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we get P/T = kBN(1/V ). This gives

PV = NkBT . (90)

Finally, using

µ

T
= � @S

@N

���
U,V

(91)

we obtain

µ = �kBT ln

"
V

N

✓
mU

3⇡h̄2N

◆ 3
2

#
= �kBT ln

"
V

N

✓
mkBT

2⇡h̄2

◆ 3
2

#
. (92)

The chemical potential is an intensive quantity, as it should be.

3. Failure at T = 0

Substituting U = (3/2)NkBT into (86) we obtain

S = kBN ln

"
V

N
e

5
2

✓
mkBT

2⇡h̄2

◆ 3
2

#
(93)

We observe that for T ! 0 we get S ! �1 instead of zero. This is, of course, nonsense.
In particular, this contradicts the third law. Related is the fact that the heat capacity

CV ⌘ T

✓
@S

@T

◆

V,N

=

✓
@U

@T

◆

V,N

=
3

2
kBN (94)

does not go to zero at T = 0 as it should. We observe a failure of classical physics near
T = 0.

G. Mixed states, density matrix

In quantum mechanics the Gibbs distribution is replaced by a mixed state. A general
mixed state can be presented as a set of states  ↵ (not necessarily orthonormal) with the
probabilities W↵ for this state to be realised. Obviously

P
↵
W↵ = 1. An average of an

observable is then given by

hOi =
X

↵

W↵h ↵|O| ↵i (95)
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It is convenient to encode the mixed state using the so-called density matrix:

⇢ ⌘
X

↵

W↵| ↵ih ↵| (96)

We can now use an orthonormal basis |ji, such that hj| j0i = �j,j0 , to expand

| ↵i =
X

j

c↵j|ji (97)

This gives

⇢ =
X

↵,j,j0

W↵c↵jc
⇤
↵j0 |jihj0| =

X

j,j0

|ji⇢j,j0hj0| , (98)

where

⇢j,j0 =
X

↵

W↵c↵jc
⇤
↵j0 . (99)

We observe that ⇢j,j0 is a hermitian matrix. Indeed ⇢
j,j0 = ⇢⇤

j0,j. Thus, an orthonormal basis
| ni, i.e., h n| n0i = �n,n0 , can always be found, in which ⇢ is diagonal, i.e.,

⇢ =
X

n

Wn | ni h n| . (100)

An expectation value of an observable O can be written as

hOi =
X

↵

W↵h ↵|O| ↵i =
X

↵j

W↵h ↵|O|jihj| ↵i =
X

↵j

hj|W↵| ↵ih ↵|O|ji = Tr(⇢O) .

(101)

A density matrix evolves in time in accordance with the von Neumann equation:

ih̄
@

@t
⇢ = [H, ⇢] . (102)

Indeed, if at t = 0 we have ⇢ =
P

↵
W↵ | ↵i h ↵|, then

⇢(t) =
X

↵

W↵ | ↵(t)i h ↵(t)| =
X

↵

W↵e
�iHt/h̄ | ↵(t)i h ↵(t)| eiHt/h̄

= e�iHt/h̄⇢eiHt/h̄ . (103)

Differentiating with respect to t we obtain (102). Generalisation to the case of a time-
dependent Hamiltonian is straightforward.

In particular, if ⇢ is a function of the Hamiltonian ⇢(H), then @

@t
⇢ = 0.

If the density matrix represents a pure state, i.e., ⇢ = | i h |, then ⇢2 = ⇢. For a mixed
state ⇢2 6= ⇢ and Tr[⇢2] < Tr[⇢].
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H. Microcanonical ensemble (quantum)

The microcanonical density matrix is given by

⇢ ⌘
X

n

Wn| nih n| . (104)

Here | ni are the eigenvectors of the Hamiltonian H | ni = En | ni. We choose an energy
interval [E,E + dE] and count the number dN(E) of quantum states satisfying E < En <

E + dE. The probabilities Wn are then given by

Wn =

8
<

:
1/dN(E) for E < En < E + dE

0 otherwise
(105)

I. Entropy (quantum)

The quantum version of the entropy is defined as

S = �kBTr(⇢ ln ⇢) . (106)

If the density matrix is diagonalised (in an orthonormal basis), i.e., ⇢ =
P

n
Wn| nih n|,

then

S = �kBTr(⇢ ln ⇢) = �kB
X

n

Wn lnWn . (107)

As in the classical case entropy is additive. For two independent systems A and B,
⇢ = ⇢A ⌦ ⇢B. This means that the probability to be in state

�� A

n

↵ �� B

m

↵
is given by WA

n
WB

m
.

Then

S = �kB
X

n,m

WA

n
WB

m

⇥
lnWA

n
+ lnWB

m

⇤
= SA + SB . (108)

For the microcanonical ensemble defined above (105) we readily obtain

S = kB ln[dN(E)] . (109)

1. Problem with entropy

One can show (exercise) that the Liouville equation in the classical limit or the von
Neumann equation in the quantum case lead directly to a conclusion that dS/dt = 0, i.e.,
the entropy of an isolated system is constant. Thus, an isolated system does not relax to
equilibrium.

24

-> Sheet 10 Problem S(: )



J. Canonical ensemble

FIG. 5: System coupled to a thermal bath

We consider a system thermally coupled to a much bigger reservoir (thermal bath) (see
Fig. 5). Only the heat exchange is allowed between the system and the bath. We assume
the density matrix diagonal in the eigenbasis of the Hamiltonian, i.e., ⇢ ⌘

P
n
Wn| nih n|

and H| ni = En | ni. We demand the entropy to be maximal under the constraint of a
given internal energy U , which we identify with the average value of the energy

U = hEi = Tr(⇢H) =
X

n

WnEn . (110)

We use the method of Lagrange multipliers

SL = �kB
X

n

Wn lnWn � �

 
X

n

Wn � 1

!
� ↵

 
X

n

WnEn � U

!
(111)

and demand

@SL

@Wn

= �kB(lnWn + 1)� �� ↵En = 0 (112)

This gives

Wn = const. · e�
↵En
kB . (113)

We rename ↵ = �kB and introduce a normalisation constant 1/Z, which gives

Wn =
1

Z
e��En . (114)

From the normalisation condition
P

n
Wn = 1 we obtain Z =

P
n
e��En . The quantity Z

plays a central role is the statistical physics and is called partition function (German:
Zustandssumme).
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1. The physical meaning of �

We want to understand what is �. Since the eigenenergies of the Hamiltonian depend on
the volume and the number of particles we can consider the partition function as a function
of �, V,N , i.e.,

Z(�, V,N) =
X

n

e��En . (115)

Analogously for the internal energy

U(�, V,N) =
1

Z

X

n

Ene
��En . (116)

Finally, we get for the entropy

S(�, V,N) = �kB
X

n

Wn lnWn = �kB
X

n

e��En

Z
[� lnZ � �En]

= kB lnZ + kB�U . (117)

We observe from Eqs. (115) and (116) a useful relation

U = � @

@�
lnZ . (118)

We fix V and N and invert Eq. (116). Namely, Eq. (116) gives U(�). We assume this
function to be invertible, which would give �(U). Then Eq. (117) gives (V and N fixed)

S(U, V,N) = kB lnZ(�(U)) + kBU�(U) . (119)

From this and (118) we get (V and N fixed)

1

T
=
@S

@U
=

✓
kB
@ lnZ

@�
+ kBU

◆
@�

@U
+ kB� = kB� . (120)

Thus � = 1/(kBT ). The final form of the canonical density matrix is thus

Wn =
1

Z
exp

✓
� En

kBT

◆
, Z =

X

n

exp

✓
� En

kBT

◆
. (121)

In the matrix form the same reads

⇢ =
1

Z
exp

✓
� H

kBT

◆
, Z = tr


exp

✓
� H

kBT

◆�
. (122)
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2. Free energy

Eq. (117) can be rewritten as

U � TS = F = �kBT lnZ . (123)

Since Eq. (117) gives the partition function as function of �, V , and N , i.e., T , V , and N

we have

F (T, V,N) = �kBT lnZ(T, V,N) . (124)

This relation allows, using (22), obtaining the thermodynamic state functions directly from
the partition function.

3. Alternative derivation

Alternatively to maximising the entropy under the condition of a fixed internal energy
U = Tr(⇢H), one can consider the combined system of the system and the thermal bath
being described by a micro canonical state with energy E. We split this energy into the
energy of the system ES and the energy of the bath EB. More accurately, we consider the
product states

��nS
↵ ��mB

↵
of the combined system and associate the energy En,m = ES

n
+EB

m

with these states (neglecting the energy related to the interaction between the system and
the bath). Since the system is much smaller than the bath, we expect ES

n
⌧ EB

m
. The

probability of the combined system to be in the state
��nS
↵ ��mB

↵
is given by

Wn,m =
1

dN(E)
for E < En,m < E + dE , (125)

and zero otherwise. Here dN(E) is the number of states of the combined system with
energies between E and E + dE. Next, we calculate the probability of the system to be in
the state

��nS
↵
:

Wn =
X

m

Wn,m =
dNB(E � En)

dN(E)
. (126)

Here dNB(E) is the number of states of the bath with energies between E and E + dE.
Thus we obtain

kB lnWn = kB ln
⇥
dNB(E � En)

⇤
� kB [dN(E)]

= SB(E � En)� S = SB(E)� En

@SB(E)

@E
� S = const.� En

T
. (127)
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We have used the relation

@SB(E)

@E

���
V,N

=
1

T
. (128)

(The bath is microcanonical, E = U). Thus T is the temperature of the bath enforced upon
the much smaller system. This again gives the canonical distribution

Wn =
1

Z
exp

✓
� En

kBT

◆
, Z =

X

n

exp

✓
� En

kBT

◆
. (129)

4. Canonical ensemble: fluctuations of the energy. Equivalence of the canonical and the

microcanoincal ensembles.

We use again the relation

U = hEi = 1

Z

X

n

Ene
��En = � 1

Z

@Z

@�
= � @

@�
lnZ . (130)

Differentiating once again we obatin

@U

@�
= � 1

Z

@2Z

@�2
+

1

Z2

✓
@Z

@�

◆2

. (131)

This gives

@U

@�
= � 1

Z

X

n

E2
n
e��En + hEi2 = �hE2i+ hEi2 . (132)

Finally,

hE2i � hEi2 = (�E)2 = �@U
@�

= kBT
2@U

@T
= kBT

2CV (133)

Since CV / N and U / N we obtain �E

hEi /
1p
N

! 0. We see that in the thermodynamic
limit (N ! 1) the relative fluctuations of energy vanish. Thus the canonical ensemble
should be equivalent to the microcanonical one.

K. Grand canonical ensemble

We consider a system coupled to a much bigger reservoir (thermal bath) (see Fig. 6).
The heat exchange and the particle exchange are allowed between the system and the bath.
We assume the density matrix diagonal in the eigenbasis of the Hamiltonian, i.e., ⇢ ⌘
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FIG. 6: System coupled to a thermal bath, exchange of particles is allowed.

P
n
Wn| nih n| and H| ni = En | ni. Moreover, we assume that the number of particles

operator commutes with the Hamiltonian, [N̂ ,H] = 0. Thus, they have a mutual basis of
eigenstates. Therefore N̂ | ni = Nn | ni. We demand the entropy to be maximal under the
constraint of a given internal energy U ,

U ⌘ hEi = Tr(⇢H) =
X

n

WnEn , (134)

and a given average number of particles

N ⌘ hN̂i = Tr(⇢N̂) =
X

n

WnNn . (135)

We use the method of Lagrange multipliers

SL = �kB
X

n

Wn lnWn � �

 
X

n

Wn � 1

!
� ↵

 
X

n

WnEn � U

!
� �

 
X

n

WnNn �N

!
.

(136)

and demand

@SL

@Wn

= �kB(lnWn + 1)� �� ↵En � �Nn = 0 (137)

This gives

Wn = const. · e�
↵En
kB · e�

�Nn
kB . (138)

We rename ↵ ⌘ kB�, � = �kB�µ (we anticipate µ to be the chemical potential, but this is
not yet proven) and introduce a normalisation constant 1/ZG, which gives

Wn =
1

ZG

e��(En�µNn) . (139)

From the normalisation condition
P

n
Wn = 1 we obtain ZG =

P
n
e��(En�µNn). The quan-

tity ZG is called grand canonical partition function.
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It is a straightforward exercise (very similar to the calculation provided above for the
canonical ensemble) to show that again kB� = 1/T and µ is indeed the chemical potential.
Moreover, it is possible to relate the grand canonical partition function ZG with the grand
canonical thermodynamic potential ⌦(T, V, µ) = U � TS � µN . Namely

⌦ = �kBT lnZG . (140)

Then, Eqs. (34) provide the connection to the thermodynamics.

1. Alternative derivation

Alternatively to maximising the entropy under the condition of a fixed internal energy
U = Tr(⇢H) and fixed average number of particles N = Tr(⇢N̂), one can consider the
combined system of the system and the thermal bath being described by a micro canonical
state with energy E and number of particles N . We split this energy into the energy of the
system ES and the energy of the bath EB. Similarly we split N into NS and NB. More
accurately, we consider the product states

��nS
↵ ��mB

↵
of the combined system and associate

the energy En,m = ES

n
+EB

m
and the number Nn,m = NS

n
+NB

m
with these states (neglecting

the energy related to the interaction between the system and the bath). Since the system
is much smaller than the bath, we expect ES

n
⌧ EB

m
and NS

n
⌧ NB

m
. The probability of the

combined system to be in the state
��nS
↵ ��mB

↵
is given by

Wn,m =
1

dN(E)
for E < En,m < E + dE , (141)

and zero otherwise. Here dN(E) is the number of states of the combined system with
energies between E and E + dE. Next, we calculate the probability of the system to be in
the state

��nS
↵
:

Wn =
X

m

Wn,m =
dNB(E � En, N �Nn)

dN(E)
. (142)

Here dNB(E,N) is the number of states of the bath with energies between E and E + dE

and with N particles. Thus we obtain

kB lnWn = kB ln
⇥
dNB(E � En, N �Nn)

⇤
� kB [dN(E)]

= SB(E � En, N �Nn)� S = SB(E)� En

@SB(E,N)

@E
�Nn

@SB(E,N)

@N
� S

= const.� En

T
+

µNn

T
. (143)
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We have used the relations

@SB(E,N)

@E

���
N,V

=
1

T
,

@SB(E,N)

@N

���
E,V

= �µ

T
. (144)

(The bath is microcanonical, E = U .) Thus T is the temperature of the bath enforced upon
the much smaller system. Similarly, µ is the chemical potential of the bath enforced upon
the system by the bath. This again gives the grand canonical distribution

Wn =
1

ZG

exp

✓
�En � µNn

kBT

◆
, ZG =

X

n

exp

✓
�En � µNn

kBT

◆
. (145)

2. Grand canonical ensemble: fluctuations of the energy and number of particles. Equivalence

of the grand canonical, canonical and the microcanonical ensembles.

It is a straightforward exercise, very similar to the derivation provided for the canonical
ensemble to show that the fluctuations of the energy and of the number of particles in the
grand canonical ensemble can be estimated as �E

hEi /
1p
N

! 0 and �N

hNi /
1p
N

! 0. Thus, in
the thermodynamic limit all three ensembles are equivalent.

L. Summary of three ensembles

We summarise the thermodynamic potentials and their relation to the statistical physics
for the three ensembles:

Microcanonical

�S(U, V,N) = �kB lnZM , (146)

where ZM is the microcanonical partition function, which we define as

ZM = dN(E = U) =
X

E<En<E+dE

1 . (147)

Note that ZM was not introduced before. We introduce it here for similarity with the other
ensembles. We also take as a thermodynamic potential minus the entropy, which then is
minimal in equilibrium, similar to the other ensembles.

Canonical
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F (T, V,N) = �kBT lnZC , (148)

where ZC = Z is the canonical partition function,

ZC =
X

n

e��En . (149)

Grand canonical

⌦(T, V, µ) = �kBT lnZG , (150)

where ZG is the grand canonical partition function,

ZG =
X

n

e��(En�µNn) . (151)

IV. MAXWELL-BOLTZMANN GAS

A. Canonical calculation

We consider again the Maxwell-Boltzmann gas with N particles in a box of size Lx, Ly, Lz.
The Hamiltonian reads

H =
NX

i=1

p
2
i

2m
(152)

The partition function reads

Z =
1

N !

X

{pi}

e��
PN

i=1
p2
i

2m (153)

The factor N ! takes into account the fact that the particles are identical.
The periodic boundary conditions allow the following momenta

(px, py, pz) =

✓
2⇡h̄

Lx

nx,
2⇡h̄

Ly

ny,
2⇡h̄

Lz

nz

◆
(154)

We reduce the sum over micro-states {pi} (eigen state of H with N particles) to a sum
over one-particle-states:

Z =
1

N !

X

{pi}

e��
PN

i=1
p2
i

2m =
1

N !

 
X

p

e��
p2

2m

!N

=
1

N !
(Z1)

N (155)
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Here Z1 is the single particle partition function:

Z1 ⌘
X

p

e��
p2

2m = V

Z
dpxdpydpz
(2⇡h̄)3

e��
p2

2m =
V

�3T
(156)

Here

1

�T
=

1

2⇡h̄

r
2m⇡

�
or �T =

s
2⇡h̄2

mkBT
(157)

is the thermal de Broglie wavelength.
For the free energy we get

F (T, V,N) = �kBT lnZ = �kBTN ln
⇥
Z1N

�1e
⇤
= �kBTN ln


V

N

e

�3T

�
. (158)

Here we have used the Stirling formula

lnN ! ⇡ N ln(N/e) +O(lnN) . (159)

Differentiating the free energy with respect to T we obtain

S = �@F
@T

���
V,N

= �F

T
+

3

2
kBN ! U =

3

2
NkBT . (160)

Similarly

P = �@F
@V

���
T,N

=
NkBT

V
! PV = NkBT , (161)

µ =
@F

@N

���
T,V

= �kBT ln


V

N

1

�3T

�
= �kBT ln

"
V

N

✓
mkBT

2⇡h̄2

◆ 3
2

#
. (162)

The results are identical to those obtained using the microcanonical ensemble (Sec. III F 2).

1. Validity of the Maxwell-Boltzmann approximation

We calculate again the entropy:

S = �@F
@T

���
V,N

= �F

T
+

3

2
kBN = kBN ln


V

N

e

�3T

�
+

3

2
kBN (163)

We use the estimate

V

N
⇠ a3 , (164)
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where a is the typical distance between the particles. We observe that for a ⌧ �T one gets
S < 0. Thus we get a failure of the classical physics. The Maxwell-Blotzmann regime is
only valid if a � �T. Two important examples: 1) for hydrogen gas H2, at T = 100K, one
obtains �T ⇡ 1Å ⌧ a (for typical densities). Thus, the Maxwell-Boltzmann approximation
is good for H2. 2) for electrons in a typical metal, at T = 100K, one gets �T ⇡ 70Å � a.
Maxwell-Boltzmann approach fails for electrons.

B. Grand canonical calculation

We calculate the grand canonical partition function

ZG(T, V, µ) =
X

n

e��(En�µNn) =
X

N

e�µN
X

j

e��Ej(N) =
X

N

e�µNZ(N) . (165)

Using Z(N) = ZN

1 /N ! we get

ZG(T, V, µ) =
X

N

1

N !
(e�µZ1)

N = exp
�
e�µZ1

�
. (166)

For the grand canonical potential we obtain

⌦(T, V, µ) = �kBT lnZG = �kBTe
�µZ1 = �kBTe

�µ
V

�3T
. (167)

The thermodynamic relations give

N = �@⌦
@µ

���
T,V

= e�µ
V

�3T
= � ⌦

kBT
! ⌦ = �NkBT . (168)

S = �@⌦
@T

���
V,µ

= �5

2

⌦

T
� µN

T
! U = �3

2
⌦ =

3

2
kBTN . (169)

P = �@⌦
@V

���
T,µ

= �⌦
V

! PV = NkBT . (170)

Note, that in the grand canonical case the chemical potential µ is controlled and the
average number of particles can be obtained as a function of µ, i.e. N = N(T, V, µ), using
Eq. (168). Inverting this equation we clearly obtain (162). We observe again the equivalence
of the canonical and grand canonical ensembles.
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V. QUANTUM GASES

Our Maxwell-Boltzmann calculation, although looking quantum, was not correct. The
problem was counting the number of states properly. We have used the factor 1/N ! to
account for identical particle, but that was too simple.

Consider once again the grand canonical partition function

ZG =
X

N

e�µNZ(N) . (171)

For the canonical partition function with N particles, Z(N) we have taken

Z(N) =
1

N !

X

{pi}

e��
PN

i=1
p2
i

2m =
1

N !

 
X

p

e��
p2

2m

!N

=
1

N !
(Z1)

N . (172)

Here

Z1 =
X

p

e��
p2

2m (173)

is a 1-particle partition function. We introduce a more general notation for 1-particle states.
Instead of p we will write � (later � will encode the spin in addition to the momentum).
The index � will run over all possible 1-particle states. Instead of p2

2m we will write ✏�, i.e.,
the energy of the 1-particle state �. This gives

Z(N) =
1

N !

X

{�i}

e��
PN

i=1 ✏�i =
1

N !

 
X

�

e��✏�

!N

=
1

N !
(Z1)

N , (174)

where

Z1 =
X

�

e��✏� . (175)

Where is the mistake? The sets of 1-particle states {�i} (i = 1, . . . , N) taken by N

particles can be of different nature. If all �i are different, i.e., the N particles occupy N

different 1-particle states, dividing by N ! is correct. However, if at list 2 particles occupy the
same 1-particle state (assume they are bosons), we overestimate the number of permutations.
If the particles are fermions, the double occupations are not allowed at all. Thus, in both
cases our calculation fails.
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1. Bosons

The logic thus far was: say which particle (particle number i) occupies which 1-particle
state (�i) and then count permutations (divide by the number of permutations). New logic:
count only how many particles occupy a 1-particle state � and sum over all possible 1-
particle states �. In the new logic there are no permutations at all. We get for the canonical
partition function

Z(N) =
X

{n�}P
� n�=N

e��
P

� n�✏� . (176)

Here {n�} denotes a set of occupation numbers for each 1-particle state. In the canonical
ensemble this set is restricted to satisfy

P
�
n� = N . This is not so simple to calculate due

to the constraint
P

�
n� = N . It is much simpler to calculate the grand canonical partition

function

ZG(µ) =
X

{n�}

e��
P

� n�(✏��µ) , (177)

where the set of occupation numbers {n�} is unrestricted.
Simple combinatorics gives

ZG(µ) =
Y

�

1X

n�=0

e��n�(✏��µ) =
Y

�

Z� . (178)

Here

Z� =
1X

n�=0

e��n�(✏��µ) (179)

is a partition function related to a particular 1-particle state �. This is not the same as the
above introduced Z1, which was a partition function for 1-particle occupying any possible
state.

Summing the geometric series we get

Z� =
1

1� e��(✏��µ)
. (180)

Note that the series converges only if ✏� > µ. Thus, for bosons the chemical potential is not
arbitrary. It has to satisfy µ < min(✏�). In the simplest case ✏� = p

2/2m we have µ < 0.
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The probability that a 1-particle state � is occupied by n� particles is obviously given by

W�(n�) =
1

Z�

e��n�(✏��µ) (181)

For the average occupation of the state � this gives

hn�i =
1X

n�=0

W�(n�)n� =
1

Z�

1X

n�=0

n�e
��n�(✏��µ) =

1

e�(✏��µ) � 1
(182)

The simplest way to prove this is to introduce x ⌘ �(✏� � µ). Then

Z� =
1X

n�=0

e�xn� =
1

1� e�x
. (183)

Then

hn�i =
1

Z�

1X

n�=0

n�e
�xn� = � 1

Z�

@Z�

@x
=

1

ex � 1
. (184)

Thus we obtain the famous Bose function

hn�i = nB(✏�) , (185)

where

nB(✏) ⌘
1

e�(✏�µ) � 1
. (186)

The condition µ < ✏ is again clearly seen. Indeed, it ensures that the average occupation
number is positive.

2. Fermions

For fermions the occupation numbers n� can only have two values: 0 and 1. Thus

ZG(µ) =
X

{n�=0,1}

e��
P

� n�(✏��µ) , (187)

This gives

ZG(µ) =
Y

�

1X

n�=0

e��n�(✏��µ) =
Y

�

Z� , (188)
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where

Z� =
1X

n�=0

e��n�(✏��µ) = 1 + e��(✏��µ) . (189)

For the average occupation of the state � this gives

hn�i =
1X

n�=0

W�(n�)n� =
1

Z�

1X

n�=0

n�e
��n�(✏��µ) =

1

e�(✏��µ) + 1
(190)

Thus we obtain the famous Fermi function

hn�i = nF (✏�) , (191)

where

nF (✏) ⌘
1

e�(✏�µ) + 1
. (192)

Unlike for bosons, there is no restriction on the chemical potential µ.

3. Maxwell-Boltzmann

For comparison we provide here the average occupation number of a 1-particle state � in
the Maxwell-Boltzmann approximation. The grand canonical partition function in this case
reads

ZG =
X

N

1

N !
(e�µZ1)

N = exp
�
e�µZ1

�
, (193)

where

Z1 =
X

�

e��✏� . (194)

Thus we obtain

ZG =
Y

�

Z� , (195)

where

Z� = exp
�
e��(✏��µ)

�
= exp

�
e�x
�
, (196)

38



where x ⌘ �(✏� � µ). As above

hn�i = � 1

Z�

@Z�

@x
= �@ lnZ�

@x
= e�x = e��(✏��µ) . (197)

All three distributions (Bose-Einstein, Fermi-Dirac, Maxwell-Boltzmann) are shown in
Fig. 7. They give approximately the same when hn�i ⌧ 1, i.e., for ✏� � µ � kBT (see
Fig. 7).

-5 5
β(ϵ -μ)

1

2

3

4

〈n〉

FIG. 7: Average occupation number: Bose-Einstein (upper curve), Maxwell-Boltzmann (middle

curve), Fermi-Dirac (lower curve).

VI. IDEAL FERMI-GAS

A. General relations

Fermions are particles with a half-integer spin. For example electrons have spin s = 1/2.
Thus 1-particle states are � = {p, sz} with sz = �s,�s + 1, . . . , s. For Fermions we have
obtained

ZG =
Y

�

Z� , (198)

where

Z� = 1 + e��(✏��µ) . (199)
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This gives for the grand canonical potential

⌦(T, V, µ) = �kBT lnZG(T, V, µ) = �kBT
X

�

ln
⇥
1 + e��(✏��µ)

⇤
. (200)

We calculate first the average particle number (remember in the grand canonical ensemble
the chemical potential is fixed, whereas the number of particles is not). The calculation
gives an obvious result:

hNi = �@⌦
@µ

���
T,V

=
X

�

e��(✏��µ)

1 + e��(✏��µ)
=
X

�

hn�i . (201)

Here

hn�i = nF (✏�) =
1

e�(✏��µ) + 1
. (202)

Thus we obtain the average number of particles as a function of the chemical potential
N(T, V, µ). Even if the number of particles is given and, in principle, one should have
used the canonical ensemble, one usually performs a grand canonical calculation. Then one
inverts the function N(T, V, µ) into µ(T, V,N).

For the entropy we obtain

S = �@⌦
@T

���
V,µ

= �kB
X

�

[hn�i lnhn�i+ (1� hn�i) ln(1� hn�i)] . (203)

We observe that the 3-d law of thermodynamics is fulfilled, i.e., S(T ! 0) ! 0.
Out of all these quantities we can combine the internal energy. The result, obviously,

reads

U = ⌦+ TS + µN =
X

�

✏�nF (✏�) . (204)

For the pressure we obtain

P = �@⌦
@V

���
T,µ

= �⌦
V

(205)

B. T = 0, Fermi energy

For T = 0 we have

nF (✏�) =
1

e�(✏��µ) + 1
= ✓(µ� ✏�) =

8
<

:
1 für ✏� < µ

0 für ✏� > µ
(206)
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Thus, µ(T = 0) is the highest energy a particle can have. This energy is called the Fermi
energy ✏F ⌘ µ(T = 0). All states with energies below the Fermi energy are occupied. The
states with energies above ✏F are empty.

⌦(T, V, µ) = �kBT
X

�

ln
⇥
1 + e��(✏��µ)

⇤
=
X

�

(✏� � µ)✓(µ� ✏�) (207)

N =
X

�

nF (✏�) =
X

�

✓(µ� ✏�) (208)

N =
X

�

✓(µ� ✏�) = (2s+ 1)V

Z
d✏ ⌫(✏) ✓(µ� ✏) (209)

We have introduced the (orbital) density of states, i.e., number of states per volume and per
spin projection:

⌫(✏) =
1

(2s+ 1)V

X

�

�(✏� ✏�) =
1

V

X

p

�(✏� ✏p) (210)

For periodic boundary conditions

(px, py, pz) =

✓
2⇡h̄

Lx

nx,
2⇡h̄

Ly

ny,
2⇡h̄

Lz

nz

◆
(211)

Then
X

p

· · · = V

Z
dpxdpydpz
(2⇡h̄)3

. . . . (212)

Thus the integration measure reads

d3p

(2⇡h̄)3
= ⌫(✏)d✏ . (213)

This gives for ✏p = p2

2m

⌫(✏) =
m3/2✏1/2p
2⇡2h̄3

(214)

Assume the density of particles is given. What is the chemical potential/Fermi energy?

n =
N

V
= (2s+ 1)

Z
d3p

(2⇡h̄)3
✓(✏F � ✏p) =

(2s+ 1)

(2⇡h̄)3
· 4
3
⇡p3

F
(215)

41



Here the Fermi momentum pF is given by pF =
p
2m✏F .

µ(T = 0) = ✏F =
h̄2

2m

✓
6⇡2n

2s+ 1

◆ 2
3

(216)

In typical metals ✏F ⇠ 10eV, which corresponds to the temperature TF ⌘ ✏F/kB ⇠ 105K.
At usual temperatures we thus have T ⌧ TF . This regime is called ”degenerate Fermi gas”.
The Fermi sphere is almost the same as at T = 0. Only the occupation numbers around the
Fermi energy change (see Fig. 8).

FIG. 8: Occupation numbers in the regime of degenerate Fermi gas.

C. Degenerate Fermi gas, Sommerfeld expansion

We consider the degenerate regime, kBT ⌧ ✏F . We calculate the gross canonical potential

⌦(T, V, µ) = �kBT lnZG(T, V, µ) = �kBT
X

�

ln
⇥
1 + e��(✏��µ)

⇤
. (217)

Transforming to integration we get

⌦(T, V, µ) = �kBT (2s+ 1)V

1Z

�1

d✏ ⌫(✏) ln
⇥
1 + e��(✏�µ)

⇤
(218)

The integration runs from �1 as we define ⌫(✏) = 0 for ✏ < ✏min. Performing integration
by parts we obtain

⌦(T, V, µ) = �(2s+ 1)V

1Z

�1

d✏ a(✏)nF (✏) , (219)

where

a(✏) ⌘
✏Z

�1

d✏1⌫(✏1) (220)
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Another integration by parts gives

⌦(T, V, µ) = �(2s+ 1)V

1Z

�1

d✏ b(✏)(�n0
F
(✏)) , (221)

where

b(✏) ⌘
✏Z

�1

d✏1a(✏1) (222)

A simple calculation gives

�@nF (✏)

@✏
=

1

4kBT cosh2 ✏�µ

2kBT

(223)

In the degenerate regime this function is substantially non-zero only in the kBT vicinity of

FIG. 9: Function �@nF (✏)/@✏.

the chemical potential (see Fig. 9). To proceed, we expand b(✏) around ✏ = µ and substitute
the expansion into (221) . We obtain

b(✏) = b(µ) + a(µ)(✏� µ) +
1

2
⌫(µ)(✏� µ)2 + . . . (224)

⌦(T, V, µ) = �(2s+ 1)V


b(µ) +

⇡2

6
(kBT )

2 ⌫(µ) + . . .

�
. (225)

In the calculation we have used
1Z

�1

dx
x2

cosh2 x
=
⇡2

6
. (226)
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We now turn to the particle number

N = �@⌦
@µ

���
T,V

= (2s+ 1)V


a(µ) +

⇡2

6
(kBT )

2 d⌫(µ)

dµ
+ . . .

�
. (227)

For a(µ) we have

a(µ) ⌘
µZ

�1

d✏1⌫(✏1) =
N(T = 0, V, µ)

(2s+ 1)V
(228)

Thus

N(T, V, µ) = N(T = 0, V, µ) + (2s+ 1)V
⇡2

6
(kBT )

2 d⌫(µ)

dµ
+ . . . (229)

We divide by V and obtain for the density

n(T, µ) = n(T = 0, µ) + (2s+ 1)
⇡2

6
(kBT )

2 d⌫(µ)

dµ
+ . . . (230)

1. Chemical potential µ(T )

Equation (230) assumes the gross canonical logic: the chemical potential is given, the
density depends on the temperature. If, instead, the density is given, we have to invert the
logic and find µ(T, n). For this, we write Eq. (230) as n(T, µ) = n and try to find µ. For
n(T = 0, µ) we use Eq. (216), which we write here again

µ(T = 0) = ✏F =
h̄2

2m

✓
6⇡2n

2s+ 1

◆ 2
3

. (231)

We invert this equation in two different ways. First we obtain the density at T = 0 as a
function of µ (which is arbitrary):

n(T = 0, µ) =
2s+ 1

6⇡2

✓
2mµ

h̄2

◆ 3
2

. (232)

Second, we express the density n = n(T, µ) via ✏F = µ(T = 0), i.e.,

n =
2s+ 1

6⇡2

✓
2m✏F
h̄2

◆ 3
2

. (233)

We also use Eq. 214 for the density of states ⌫(✏) = m
3/2

✏
1/2

p
2⇡2h̄3 , which gives

d⌫(µ)

dµ
=

d⌫(✏)

d✏

���
✏!µ

=
m3/2

p
8⇡2h̄3

1
p
µ

. (234)
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Substituting all this into (230) we obtain

n =
2s+ 1

6⇡2

✓
2m✏F
h̄2

◆ 3
2

= n(T = 0, µ) + (2s+ 1)
⇡2

6
(kBT )

2 d⌫(µ)

dµ

=
2s+ 1

6⇡2

✓
2m

h̄2

◆ 3
2

µ3/2 +

⇡2

8
p
µ
(kBT )

2 + . . .

�
(235)

Simplifying we get

✏3/2
F

= µ3/2 +
⇡2

8
p
µ
(kBT )

2 + . . . (236)

This equation can be inverted if we approximate µ ⇡ ✏F in the second term of the RHS (we
assume kBT ⌧ ✏F , thus small correction):

µ = ✏F

"
1� ⇡2

12

✓
kBT

✏F

◆2

+ . . .

#
(237)

The result is shown in Fig. 10.

FIG. 10: µ(T ) in Sommerfeld expansion. The function µ(T ) is shown for all temperatures, but,

thus far, we have obtained only the low temperature expansion (red box).

2. Entropy S(T ) and heat capacitance CV (T )

Next we consider the entropy. Using (225) we get

S(T, V, µ) = �@⌦
@T

���
V,µ

= (2s+ 1)V
⇡2⌫(µ)

3
k2
BT . (238)

First, we observe again the validity of the 3-d law, namely S(T ! 0) ! 0.
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Further, we can calculate the heat capacitance CV = T
�
@S

@T

�
V,N

. One has to be careful
here as the partial derivative in the formula for CV is taken with N = cosnt. and not with
µ = const.. Therefore the correct result reads

CV = T

✓
@S

@T

◆

V,N

= T

✓
@S(T, V, µ(T, V,N)

@T

◆

V,N

. (239)

The chemical potential is in reality a function of temperature T and density n = N/V . This
gives

CV = T

✓
@S(T, V, µ)

@T

◆

V,µ

+ T

✓
@S(T, V, µ)

@µ

◆

V,T

✓
@µ(T, V,N)

@T

◆

V,N

. (240)

For the second term we can use the result (237). One can see that the second term / T 3,
thus, at low temperatures, the first term dominates and we obtain

CV ⇡ NkB
⇡2

2

kBT

✏F
+O(T 3) . (241)

D. Pauli paramagnetism

To describe the ideal gas of electrons in a magnetic field we recall the Pauli Hamiltonian

H =

⇣
~p� q

c

~A
⌘2

2m
� h̄q

2mc
~B · ~� + q� , (242)

where for electrons q = �e (we use e > 0). Assuming � = 0 (no electric field) we get

H =

⇣
~p+ e

c

~A
⌘2

2m
+ µB

~B · ~� , (243)

where we have introduced the Bohr magneton µB ⌘ eh̄

2mc
. The magnetic field ~B = ~r ⇥ ~A

influences the electrons in two ways. The coupling via the kinetic energy
⇣
~p+ e

c
~A

⌘2

2m , called also
the orbital coupling, is responsible for the Lorentz force, modifying the trajectories of the
electrons and leading, finally, to the Landau levels and the diamagnetic response. The other
coupling, Zeeman term, µB

~B · ~� acts on the spin and results in a paramagnetic response.
We consider here the effect of the Zeeman coupling only. Thus we (artificially) assume the
Hamiltonian to be

H =
p
2

2m
+ µB

~B · ~� . (244)
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We choose, for simplicity, ~B = Bez and get the 1-particle states � = {~p,�}, where � = �z =

±1. The 1-particle energies are

✏� = ✏~p,� = ✏p + µBB� =
p
2

2m
+ µBB� . (245)

For the grand canonical potential we obtain

⌦(T, V, µ) = �kBT
X

�

ln
⇥
1 + e��(✏��µ)

⇤

= �kBT
X

p

ln
⇥
1 + e��(✏p+µBB�µ)

⇤
� kBT

X

p

ln
⇥
1 + e��(✏p�µBB�µ)

⇤
. (246)

We can formally rewrite this as

⌦(T, V, µ) = ⌦0(T, V, µ� µBB) + ⌦0(T, V, µ+ µBB) , (247)

where

⌦0(T, V, µ) ⌘ �kBT
X

p

ln
⇥
1 + e��(✏p�µ)

⇤
(248)

is the grand canonical potential of ”spin-less” fermions (electrons) with energies ✏p. We have
already calculated ⌦0 above. One just has to remove the spin degeneracy factor (2s+1). We
observe that, effectively, the electrons with spin up (� = +1) have the chemical potential
µ+ = µ � µBB and the electrons with spin down (� = �1) have the chemical potential
µ� = µ+ µBB. Thus ⌦(T, V, µ) = ⌦0(T, V, µ+) + ⌦0(T, V, µ�).

Let us calculate (out of curiosity) the derivative

�@⌦

@B

���
T,V

= µB

@⌦0(µ+)

@µ

���
T,V

� µB

@⌦0(µ�)

@µ

���
T,V

= �µB(N+ �N�) . (249)

Here N+/� is the average number of particles with spin up/down. Taking into account that
an electron has a magnetic moment �µB (negative charge), we obtain the magnetisation (in
z-direction)

M = �µB(N+ �N�) = �@⌦

@B

���
T,V

. (250)

This relation is not accidental and will be discussed later in the context of the thermody-
namics of magnetic systems.

For a degenerate gas, kBT ⌧ ✏F it is easy to calculate
N+ �N�

V
=

Z
d✏ ⌫(✏) [nF (✏, µ+)� nF (✏, µ�)] = �2⌫(✏F )µBB . (251)
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Finally, for the magnetisation density we obtain M

V
= �B, where � is the Pauli magnetic

susceptibility given by

� = 2µ2
B
⌫(✏F ) . (252)

At high temperatures it is possible to obtain

� =
µ2
B
n

kBT
, (253)

where n is the electron density.

VII. IDEAL BOSE-GAS

A. General relations

The partition function of an ideal Bose gas is given by

ZG =
Y

�

Z� , (254)

where � denote the 1-particle states. In the simplest case � = {p, sz}, sz = �s,�s +

1, . . . , s � 1, s. The spin s is now integer, i.e., s = 0, 1, 2, . . . . The state � can be occupied
by an arbitrary number of particles, n� = 0, 1, 2, . . . . Thus we obtain

Z� ⌘
1X

n�=0

e��(✏��µ)n� =
1

1� e��(✏��µ)
. (255)

The grand canonical potential reads

⌦(T, V, µ) = �kBT lnZG(T, V, µ) = kBT
X

�

ln
⇥
1� e��(✏��µ)

⇤
. (256)

For the average number of particles this gives

hNi = �@⌦
@µ

���
T,V

=
X

�

hn�i , (257)

where the average occupation number of a state � is given by the Bose function

hn�i = nB(✏�) =
1

e�(✏��µ) � 1
. (258)
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For the entropy we obtain

S = �@⌦
@T

���
V,µ

= �kB
X

�

[hn�i lnhn�i � (1 + hn�i) ln(1 + hn�i)] . (259)

This allows calculating the inner energy as

U = ⌦+ TS + µN =
X

�

✏�nB(✏�) . (260)

B. Bose-Einstein condensation

Unlike in the Fermi gas, the ground state of the Bose gas seem to be very simple: all the
particles are in the state with minimum energy. The spin degeneracy might make things a
bit more complicated, but we will not address this here.

It is convenient to introduce a quantity z ⌘ e�µ, which is called fugacity. Consider once
again the thermodynamic potential

⌦(T, V, µ) = kBT
X

�

ln
⇥
1� e��(✏��µ)

⇤
= kBT

X

�

ln
⇥
1� ze��✏�

⇤
. (261)

or the number of particles

N(T, V, µ) =
X

�

1

e�(✏��µ) � 1
=
X

�

z

e�✏� � z
. (262)

Transforming these to integrals with the help of the density of states we obtain

⌦(T, V, µ) = kBT (2s+ 1)V

1Z

0

d✏ ⌫(✏) ln
⇥
1� ze��✏

⇤
, (263)

and

N = �@⌦
@µ

���
T,V

= (2s+ 1)V

1Z

0

d✏ ⌫(✏)nB(✏) . (264)

For the density this gives

n =
N

V
= (2s+ 1)

1Z

0

d✏ ⌫(✏)nB(✏) (265)

Assume we keep the temperature constant and increase the density. In order to accommodate
the higher density the occupation numbers nB(✏) must grow. The only way to achieve this is
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to increase the chemical potential. But the chemical potential is limited from above by ✏min.
We assume, for simplicity, that ✏min = 0. We inspect, therefore, what happens at µ = 0.
The question is whether the following integral converges or diverges

1Z

0

d✏ ⌫(✏)nB(✏, µ = 0) =

1Z

0

d✏
⌫(✏)

e�✏ � 1
(266)

If it diverges, there is no problem to accommodate an arbitrary density by taking µ ! 0. If
this integral converges, there is a maximal density we can accommodate.

nmax(T ) ⌘ (2s+ 1)

1Z

0

d✏
⌫(✏)

e�✏ � 1
. (267)

What happens if we increase the density beyond this value? The problem is solved if
we reexamine the transition from the sum to the integral in the expressions for ⌦ and N

above. In any finite system the set of energies ✏� is discrete and starts at ✏min = 0. We
denote the distance to the next energy state by �✏. For example in a cubic box of linear
size L and with ✏� = p

2/2m we have �✏ = 1
2m

�
2⇡h̄
L

�2 / L�2 / V �2/3. When we increase µ

in order to accommodate more and more particles, we can at some stage get into the regime
�µ = |µ| ⌧ �✏. Then, the first term in the sum N =

P
�

1
e
�(✏��µ)�1

, which corresponds
to ✏� = 0 becomes much larger that the other contributions. We are forced to treat it
separately. Thus we have

⌦(T, V, µ) = kBT (2s+ 1) ln[1� z] + kBT (2s+ 1)V

1Z

0

d✏ ⌫(✏) ln
⇥
1� ze��✏

⇤
(268)

and

N = �@⌦
@µ

���
T,V

= (2s+ 1)
z

1� z
+ (2s+ 1)V

1Z

0

d✏ ⌫(✏)nB(✏) . (269)

The contribution treated separately

N0 = (2s+ 1)
z

1� z
= (2s+ 1)

1

z�1 � 1
= (2s+ 1)

1

e��µ � 1
(270)

is just the number of particles in the state(s) with ✏ = ✏min = 0. For the density we obtain

n =
N

V
=

(2s+ 1)

V

z

1� z
+ (2s+ 1)

1Z

0

d✏ ⌫(✏)nB(✏) , (271)
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which can be rewritten as

n = n0 + n✏>0 . (272)

Here

n0 =
(2s+ 1)

V

z

1� z
(273)

is the density of particles with ✏ = ✏min = 0 whereas n✏>0 is the density of particles with
higher energies.

If the integral (266) converges, n✏>0 has a maximum value at a given temperature, i.e.,
max [n✏>0] = nmax(T ), which is reached at µ ! 0. If we increase the density further, the
rest of the particles must be accommodated in n0, i.e., in the condensate. We obtain a finite
density of particles in the condensate

n0(T ) = n� nmax(T ) . (274)

This corresponds to a macroscopic occupation of the 1-particle ground state(s), i.e., N0 =

V n0 / V .
Instead of increasing the density at a given T , we can lower the temperature keeping the

density constant. Then, assuming (266) converges, nmax(T ) decreases with decreasing T .
For high enough temperatures nmax(T ) > n and there is no need to have a finite condensate
density. At some critical temperature, which we denote Tc, one gets nmax(Tc) = n. At
T < Tc we are forced to have n0(T ) = n � nmax(T ) > 0. This is an example of a second
order phase transition with n0(T ) being the order parameter.

1. Non-relativistic bosons in 3D

For ✏� = p
2/2m in 3D we have (see Eq. (214))

⌫(✏) =
m3/2✏1/2p
2⇡2h̄3

= ↵✏1/2 . (275)

We have introduced ↵ ⌘ m
3/2

p
2⇡2h̄3 to simplify the notations. Then

nmax(T ) ⌘ (2s+ 1)

1Z

0

d✏
⌫(✏)

e�✏ � 1
=
↵(2s+ 1)

�3/2

Z
dx

x1/2

ex � 1
= � T 3/2 . (276)
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We have introduced another constant � ⌘ ↵(2s+1)k3/2
B

R
dx x

1/2

ex�1 to simplify the notations.
This gives � T 3/2

c = n, i.e.,

Tc = (n/�)2/3 . (277)

For the order parameter below the critical temperature, T < Tc, we obtain

n0(T ) = n� nmax(T ) = �
�
T 3/2
c

� T 3/2
�
, (278)

n0(T )

n
= 1� nmax(T )

n
= 1�

✓
T

Tc

◆3/2

. (279)

This dependence is shown in Fig. 11

FIG. 11: Density of particles in condensate (divided by the total density) as a function of temper-

ature.

2. Chemical potential for T < Tc, thermodynamic limit

From Eq. (273) one finds the fugacity as

z =
1

1 + 2s+1
V n0

. (280)

For T < Tc the condensate density is finite, V n0 = N0 � 1 and we get

z ⇡ 1� 2s+ 1

V n0
! �µ = ln(z) ⇡ �2s+ 1

V n0
. (281)

We obtain

µ ⇡ �kBT
2s+ 1

V n0
. (282)
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In the thermodynamic limit µ ! 0. We observe that |µ| / 1/V whereas the energy distance
to the first positive energy state (discussed above) was �✏ / V �2/3. Thus, we indeed reach
the limit |µ| ⌧ �✏ when V ! 1 and we must separate the ✏ = 0 contribution from the
integrals.

C. Black body radiation

We now consider a gas of photons in a cavity (Fig. 12). Such a cavity can be used as

FIG. 12: Cavity as a model of a black body.

a model of a black body, i.e, a body at temperature T that absorbs all incoming light and
radiates light in turn. Inside the cavity the photons are in thermal equilibrium with the
walls, i.e., have temperature T .

Photons are massless bosons (with spin 1). Since they are massless, only two spin states
(polarisations) are allowed. Thus, the 1-particle states are given by � = (k, �), where
k is the wave vector and � = ±1 is the polarisation. The dispersion relation is linear
✏� = ch̄|k| = c|p|.

For summations over the 1-particle states of the type
X

�

f(✏�) = 2V

Z
d✏ ⌫(✏)f(✏) (283)

we obtain the density of states

⌫(✏) =
4⇡✏2

(2⇡h̄c)3
(284)

The very special property of phonons is that their number is not conserved. Indeed they
can be freely emitted and absorbed. As we will see, this leads to a very important conclusion:
the chemical potential must be identically zero, µ = 0. Unlike with massive particles this
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does not lead to the macroscopic occupation of the zero-energy state, because photons of
zero energy do not exist.

Justification for µ = 0. We can argue similar to Eq. 127 and Eq. 143. The situation
is on one hand similar to the canonical, since only heat and not particles is exchanged with
the bath. On the other hand it is also grand canonical, since the number of particles in
the system is not fixed and we sum over all occupation numbers. We conclude that the
probability of a micro-state is given by

Wn / e��En , (285)

where n is characterised by the occupation numbers {n�}, En =
P

n�✏�, and the number
of particles Nn =

P
�
n� is not restricted. The contribution �µNn in the exponent does not

appear, as particles are not taken from the bath. Thus, indeed, µ = 0. Another important
detail: there are no particles with ✏� = 0. Every photon has to have some minimal energy.
Thus, no Bose-Einstein condensation despite µ = 0.

The grand canonical potential and the free energy are in this case the same since ⌦ =

F � µN and µ = 0. We obtain

⌦(T, V, µ = 0) = F (T, V ) = �kBT lnZG(T, V, µ = 0) = kBT
X

�

ln
⇥
1� e��✏�

⇤
. (286)

Transforming to integral we get

⌦ = 2V kBT

1Z

0

d! ⌫(!) ln
⇥
1� e��h̄!

⇤
(287)

Here ⌫(!)d! = ⌫(✏)d✏, i.e., ⌫(!) = h̄⌫(✏ ! h̄!). Since ⌫(!) / !2 we can define x = �h̄!

and extract all the dimension-full factors. We immediately observe ⌦ / T 4. The remaining
dimension-less integral reads

1Z

0

dx x2 ln
⇥
1� e�x

⇤
= �⇡

4

45
. (288)

Finally, we obtain

F = ⌦ = �V
⇡2

45

(kBT )4

(ch̄)3
. (289)

We calculate the entropy

S = �@F
@T

���
V

= �4
F

T
= kBV

4⇡2

45

(kBT )3

(ch̄)3
. (290)
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For the inner energy this gives

U = F + TS = �3F . (291)

Finally, for the heat capacitance we get

CV = T
@S

@T

���
V

= kBV
4⇡2

15

(kBT )3

(ch̄)3
. (292)

Finally, we can calculate the radiation pressure:

P = � ⌦

V
=

⇡2

45

(kBT )4

(ch̄)3
. (293)

D. Planck formula

The average occupation number of a 1-photon state � is given by by the Bose function
with µ = 0, i.e.,

hnk,�i =
1

e�h̄!k � 1
, (294)

where !k = c|k|.
Next we calculate the number of photons in an interval of frequencies d!. This is given

by

n!d! = hnk,�i2V
4⇡k2dk

(2⇡)3
= hnk,�i 2V ⌫(!) d! , (295)

where

⌫(!) =
4⇡!2

(2⇡c)3
. (296)

Finally, the radiation energy in a frequency window d! pro unit of volume is given by

u(!, T )d! ⌘ 1

V
n!h̄!d! . (297)

We obtain the Planck formula (Max Planck, 1900), which gives the spectral density of
radiation energy (per unit frequency, per unit volume)

u(!, T ) =
h̄

⇡2c3
!3

e�h̄! � 1
. (298)
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See Fig. 13. This formula interpolates between Reyleigh-Jeans-Law at low frequencies h̄! ⌧

kBT

u(!, T ) =
1

⇡2c3
kBT !

2 , (299)

and Wien-Law at high frequencies h̄! � kBT

u(!, T ) =
1

⇡2c3
h̄!3 e��h̄! . (300)

The maximum is achieved at h̄!max ⇡ 2, 822 kBT .

FIG. 13: Planck’s spectral density of black body radiation.

VIII. THERMODYNAMICS OF MAGNETIC SYSTEMS

We recall the magnetic relations. The magnetic inductance is defined via B = rotA,
whereas the magnetic field is given by H ⌘ B� 4⇡M. Here M is the magnetisation.

dUFeld =

Z
dV

✓
E · dD+H · dB

4⇡

◆
. (301)

A work performed by a magnetic system reads

�W = �dUFeld = �
Z

dV
H · dB
4⇡

. (302)

Assuming H is controlled, we have dH = 0 and dB = 4⇡dM. Thus

�W = �
Z

dV H · dM . (303)

We will shorten this as

�W = �H · dM . (304)
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The first law of thermodynamics reads

dU = �Q� dW = TdS +H · dM . (305)

Thus for the inner energy the proper variables are S and M, i.e., U(S,M). The usual
Legendre transformation leads to free energy F = U � TS. We obtain

dF = dU � TdS � SdT = �SdT +H · dM . (306)

Since M is difficult to control, we prefer to control H. To do so one has to perform another
Legendre transformation leading to the free enthalpy: G = F �H ·M. We obtain

dG = �SdT �M · dH . (307)

The proper variables of G are G(T,H) and

M = �
✓
@G

@H

◆

T

. (308)

Usually the full field H is not controlled either. It is only the externally applied field
that is controlled. The other part of H, the so called demagnetising field (or the field
created by M) is not controlled. Here we neglect the demagnetising effects and approximate
H ⇡ Hext = Bext.

The Hamiltonian of the magnetic systems usually contains the term �H ·M. That is,
usually, H = HU � Hext · M, where HU can be associated with the inner energy of the
system. Thus H corresponds to enthalpy rather than to inner energy. That’s why we have

G = �kBT lnZ , (309)

where Z has been calculated with the full Hamiltonian, Z = Tr [exp (��H)].

A. Example: spin 1/2, Curie susceptibility

Consider spin-1/2 with Hamiltonian

H = µBB�z . (310)

There are two eigenstates with energies En = ±µBB. The partition function reads

Z =
X

n

e��En = e�µBB + e��µBB = 2 cosh
µBB

kBT
. (311)
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The thermodynamic potential reads

G = �kBT lnZ = �kBT ln


2 cosh

µBB

kBT

�
. (312)

For the magnetisation (in z-direction) we get

M = �@G
@B

���
T

= µB tanh
µBB

kBT
. (313)

Linearising for µBB ⌧ kBT we get M ⇡ �B, where the (Curie) susceptibility � reads

� =
µ2
B

kBT
. (314)
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