Moderne Theoretische Physik II (Quantenmechanik II und Statistik)

Institut für Theoretische Teilchenphysik

Prof. Dr. Matthias Steinhauser, Dr. Hantian Zhang, Manuel Egner WS 23/24 – Blatt 08 Abgabe: Fr., 15.12.2023, 11:30 Uhr; Besprechung: Di., 19.12.2023

1 (*) Nicht-relativistischer Limes für bilineare Kovarianten (3 Punkte)

Bestimmen Sie das führende Verhalten in v/c der bilinearen Kovarianten $\bar{u}\Gamma u$ (mit $\Gamma \in \{1, \gamma^{\mu}, \sigma^{\mu\nu}, \gamma^5, \gamma^{\mu}\gamma^5\}$), wobei u eine Lösung der freien Dirac-Gleichung zum Impuls p^{μ} ist.

 ${\it Hinweis:}$ Beachten Sie, dass die beiden unteren Komponenten von u von der Ordnung v/c relativ zu den oberen sind.

2 (*) Dirac Gleichung (3 Punkte)

(a) Die Dirac-Gleichung im Impulsraum ist gegeben durch

$$(\not p - m)u(p) = 0, (1)$$

wobei $p = p^{\mu} \gamma_{\mu}$. Berechnen Sie alle vier Lösungen $u_{1,2,3,4}(p)$.

(b) Berechnen Sie alle vier Lösungen $v_{1,2,3,4}(p)$ der Dirac-Gleichung für Anti-Teilchen

$$(p'+m)v(p) = 0. (2)$$

(c) Berechnen Sie die Relation zwischen $v_{1,2}(p)$ und $u_{3,4}(p)$ und bestimmen Sie den Spin der Lösungen $u_{1,2,3,4}(p)$ und $v_{1,2,3,4}(p)$.

3 (*) Projektoren für Energie und Spin (4 Punkte)

(a) Berechnen Sie die Kommutatoren

$$[\Lambda_{\pm}(p), \Sigma(s)],$$

wobei $\Lambda_{\pm}(p) = \frac{\pm \not p + m}{2m}$ und $\Sigma(s) = \frac{1 + \gamma_5 \not s}{2}$ den Energie- bzw. Spinprojektor bezeichnet. s^{μ} ist der Spin-Vierervektor und p^{μ} der Viererimpuls.

(b) Zerlegen Sie s^{μ} in $\xi p^{\mu} + \eta g^{\mu 0}$, indem Sie $s^2 = -1$ und $s \cdot p = 0$ benutzen. Gegen welchen Ausdruck strebt s^{μ} für $|\vec{p}| \to \infty$?

- (c) Berechnen Sie $\Lambda_+\Sigma(s)$ für $|\vec{p}|\to\infty$.
- (d) Zeigen Sie, dass für freie Elektron-Wellenfunktionen mit s^μ und p^μ gilt

$$u_{\alpha}(p,s)\overline{u}_{\beta}(p,s) = (\Lambda_{+}(p))_{\alpha\delta}(\Sigma(s))_{\delta\beta}.$$

 α und β sind hier Spinorindizes.

4 Lagrange Multiplikatoren

Finden Sie Maximum und Minimum der Funktion $f(x,y) = x^2 + 2y^2 - x$ in

1.
$$S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\};$$

2.
$$K_2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$$

Benutzen sie die Methode der Lagrange Multiplikatoren.