
Chapter 2

Interactions in quantum many-body
physics. Superfluidity and
superconductivity

In this chapter, we turn to quantum systems of many interacting particles. We will consider
systems of interacting bosons and of interacting fermions. We will see that the interaction, in
combination with quantum character of the system, leads to emergence of collective states of
matter characterized by spontaneous symmetry breaking and remarkable properties: super-
fluidity and superconductivity.

2.1 Second quantization

For dealing efficiently with problems of many interacting particles, the formalism of second
quantization (occupation-number representation) is an extremely useful tool. We introduce
it here both for systems of interacting bosons and fermions. The formalism can be then
straightforwardly generalized to systems involving both fermions and bosons (as e.g. in the
case of electron-phonon interaction).

Consider a Hamiltonian of a many-body problem:

Ĥ =
N∑
i=1

[
− ~2

2m
∇2

i + U(ri)

]
︸ ︷︷ ︸

Ĥ0(ri)

+
1

2

∑
i 6=j

V (ri, rj) ≡ Ĥ0 + V̂ , (2.1)

where Ĥ0 is the sum of one-particles Hamiltonians and V̂ describes the interaction between
particles. Let us further consider some orthonormal basis of one-particle states

ψk(r) , k = 1, 2, . . . .

This yields a basis for N -particle wave functions:

ψk1(r1) . . . ψkN (rN) . (2.2)

We can write any many-body wave function as an expansion in this basis:

Ψ(r1, . . . , rN , t) =
∑

k1,...,kN

C(k1, . . . , kN ; t)ψk1(r1) . . . ψkN (rN) , (2.3)

The coefficients C(k1, . . . , kN ; t) should be symmetric for bosons and antisymmetric for fermions
to respect the symmetry of the wave function.
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It is convenient to introduce another many-particle basis that takes into account the bo-
son/fermion statistics, i.e. the symmetry or antisymmetry of the many-body wavefunction.
We can achieve this by using the symmetrization/antisymmetrization operator:

S(±) = c(±)
∑
P

(±1)PP, (2.4)

where the sign + corresponds to bosons and − to fermions. Here c(±) is a normalization
constant and P denotes permutations of the set {k1, k2, . . .}, for instance:

P12ψk1(r1)ψk2(r2) = ψk2(r1)ψk1(r2).

This leads to the representation of occupation numbers for many-body states and to second-
quantized forms of operators, as discussed below separately for bosons and fermions.

2.1.1 Bosons

The one-particle states are labeled by the index k = 1, 2, . . .. The new many-particle basis
states are characterized by occupation numbers n1, n2, . . .:

nk = number of particles in state k ,
∑
k

nk = N.

One sums over all states (2.2) such that {k1, k2, . . . , kN} corresponds to the occupation num-
bers (n1, n2, . . .). The corresponding sets {k1, k2, . . . , kN} are {1 . . . 1︸ ︷︷ ︸

n1

2 . . . 2︸ ︷︷ ︸
n2

. . .} + all distinct

permutations:

Φn1,n2,n3,...(r1, . . . , rN) =

(
n1!n2! . . .

N !

) 1
2 ∑
{k1,k2,...,kN}⇔(n1,n2,n3,...)

ψk1(r1)ψk2(r2) . . . ψkN (rN) .

(2.5)

The prefactor in the r.h.s. of Eq. (2.5) ensures the normalization of the state Φn1,n2,n3,....
An arbitrary many-body wave-function can be expanded in these many-body basis states:

Ψ(r1, . . . , rN , t) =
∑

n1,n2,...

C̃(n1, n2, . . . , t)Φn1,n2,...(r1, . . . , rN) . (2.6)

We will denote Φn1,n2,... by |n1, n2, . . .〉.
These states are orthogonal and normalized:

〈n1, n2, . . . |n′1, n′2, . . .〉 = δn1,n′1
δn2,n′2

. . . . (2.7)

Further, the system of these states is complete:∑
n1,n2,...

|n1, n2, . . .〉〈n1, n2, . . . | = 1 . (2.8)

Thus, the states |n1, n2, . . .〉 form a complete orthonormal system, i.e., an orthonormal basis
in the many-body Hillbert space. This Hilbert space (including states with any total number
N of particles) is known as Fock space.

2



The next step is to introduce creation and annihilation operators a†k and ak. For
bosons, they obey the commutation relations:

[ak, a
†
k′ ] = δkk′ , [ak, ak′ ] = [a†k, a

†
k′ ] = 0 . (2.9)

For any given k the algebra of operators a†k, ak is identical to the algebra of raising and lowering
operators for a harmonic oscillator. We thus have

ak|nk〉 = n
1
2
k |nk − 1〉 , (2.10)

a†k|nk〉 = (nk + 1)
1
2 |nk + 1〉 , (2.11)

a†kak|nk〉 = nk|nk〉 . (2.12)

The operator a†k increases the occupation of the state k by one (thus “creation operator”),
while ak diminishes the occupation number by one (thus “annihilation operator”). Clearly,
a†kak is the operator of the number of particles in the state k.

Any state |n1, n2, . . .〉 of the Fock space can be written as a result of an application of
creation operators on the vacuum state |0, 0, . . .〉 ≡ |0〉:

|n1, n2, . . .〉 =
∏
k

(a†k)
nk

(nk!)
1
2

|0〉 . (2.13)

Now we want to write the Hamiltonian in terms of the creation and annihilation operators.
Consider first the non-interacting part. Acting with it on a Fock-space basis state (2.5), one
obtains ∑

i

Ĥ0(ri)Φn1,n2,n3,...(r1, . . . , rN)

=
∑
k

nk (H0)kkΦn1,n2,...(r1, . . . , rN)

+
∑
k 6=k′

n
1
2
k (nk′ + 1)

1
2 (H0)k′kΦn1,n2,...,nk−1,...,nk′+1,...(r1, . . . , rN) , (2.14)

where Ĥ0ψk =
∑

k′(H0)k′kψk′ , with the single-particle matrix elements

(H0)k′k ≡ 〈k′|H0|k〉 =

∫
ddr ψ∗k′(r)Ĥ0(r)ψk(r) . (2.15)

Indeed each of the operators Ĥ0(ri) acts on one single-particle state in each term ψk1(r1) . . . ψkN (rN)
in Φn1,n2,n3,...(r1, . . . , rN). It can either leave the corresponding particle in its original state ki
or move it to another state k′, which yields two terms in the r.h.s. of Eq. (2.14).

The factors nk (in the first term) and n
1
2
k (nk′ + 1)

1
2 (in the second term) in Eq. (2.14)

originate from combinatorial factors and from the normalization factors in (2.5). Specifically,
the factor nk in the first term arises because each of the terms in (H0)kkΦn1,n2,...(r1, . . . , rN)

arises under action of
∑

i Ĥ0(ri) on Φn1,n2,...(r1, . . . , rN) exactly nk times. For example:[
Ĥ0(r1) + Ĥ0(r2) + Ĥ0(r3)

]
[ψk1(r1)ψk1(r2)ψk2(r3)]

= [2(H0)k1k1 + (H0)k2k2 ] ψk1(r1)ψk1(r2)ψk2(r3) + other terms. (2.16)

The factor in the second term follows from(
n1!n2! . . .

N !

) 1
2

(nk′ + 1) = n
1/2
k (nk′ + 1)1/2

(
n1!n2! . . . (nk − 1)! . . . (nk′ + 1)! . . .

N !

) 1
2

. (2.17)
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Here (nk′ + 1) is how many times each of the terms in (H0)k′kΦn1,n2,...,nk−1,...,nk′+1,... is obtained

when
∑

i Ĥ0(ri) acts on Φn1,n2,...(r1, . . . , rN). For example:[
Ĥ0(r1) + Ĥ0(r2) + Ĥ0(r3)

]
[ψk1(r1)ψk1(r2)ψk2(r3) + ψk1(r1)ψk2(r2)ψk1(r3) + ψk2(r1)ψk1(r2)ψk1(r3)]

= 3 (H0)k1k2 ψk1(r1)ψk1(r2)ψk1(r3) + other terms. (2.18)

According to Eq. (2.14), one can write the action of the non-interacting part of the Hamil-
tonian in the second-quantization language as follows:∑

i

Ĥ0(ri)Φn1,n2,n3,...(r1, . . . , rN) =
∑
k,k′

(H0)k′k a
†
k′ak|n1, n2, . . .〉. (2.19)

Since this is true for any basis state, we have an operator identity∑
i

Ĥ0(ri) ⇐⇒
∑
k,k′

(H0)k′k a
†
k′ak . (2.20)

Exactly in the same way one can consider the interaction part of the Hamiltonian. The
calculation proceeds analogously, and we obtain:

1

2

∑
i 6=j

V (ri, rj) ⇐⇒
1

2

∑
k,l,m,n

Vkl;mna
†
ka
†
lanam , (2.21)

where

Vkl;mn =

∫
dr dr′ ψ∗k(r)ψ∗l (r

′)V (r, r′)ψm(r)ψn(r′) ≡ 〈kl|V |mn〉 . (2.22)

Thus, the full Hamiltonian (2.1)

Ĥ =
N∑
i=1

Ĥ0(ri) +
1

2

∑
i 6=j

V (ri, rj) (2.23)

has the following second-quantization representation:

Ĥ ⇐⇒
∑
k,l

(H0)kla
†
kal +

1

2

∑
k,l,m,n

Vkl;mna
†
ka
†
lanam . (2.24)

2.1.2 Fermions

For fermions the occupation number is either zero or one (Pauli principle):

nk = 0, 1.

The appropriate (antisymmetrized) many-body basis is given by

Φn1,n2,...(r1, . . . , rN) =
1

(N !)
1
2

∑
Permutations
of {k1,...,kN}

(−1)Pψkp1 (r1) . . . ψkpN (rN)

=
1

(N !)
1
2

∣∣∣∣∣∣∣
ψk1(r1) . . . ψk1(rN)

...
. . .

...
ψkN (r1) . . . ψkN (rN)

∣∣∣∣∣∣∣ . (2.25)
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The above determinant is called Slater determinant.
The fermionic creation and annihilation operators satisfy the anti-commutation relations:

{ak, a†k′} = δkk′ , {ak, ak′} = {a†k, a
†
k′} = 0 . (2.26)

and obey

a†k|0k〉 = |1k〉 , ak|1k〉 = |0k〉 , (2.27)

a†k|1k〉 = 0 , ak|0k〉 = 0 , (2.28)

a†kak = nk . (2.29)

In analogy with the bosonic case, many-body states
(2.25) that form the basis of the Fock space are la-
beled by occupation numbers and are generated by
action of creation operators on the vacuum state:

|n1, n2, . . .〉 = (a†1)n1(a†2)n2 . . . |0〉 ,

with |0〉 ≡ |0, 0, . . .〉 . (2.30)

The Hamiltonian expressed in terms of creation/annihilation operators has the same structure
as for bosons:

Ĥ ⇐⇒
∑
k,l

(H0)kla
†
kal +

1

2

∑
k,l,m,n

Vkl;mna
†
ka
†
lanam . (2.31)

2.1.3 Basis transformation

When introducing second quantization, we used some basis of one-particle states labeled by k:
ψk(r) , k = 1, 2, . . . . There is a freedom in choosing this basis; one can transform the theory
to any other basis. Consider another orthonormal basis χl(r) , l = 1, 2, . . . . The one-particle
states in one basis can be expanded with respect to another basis:

ψk(r) =
∑
l

Uklχl(r) , i.e., |ψk〉 =
∑
l

Ukl|χl〉 . (2.32)

Then

〈χm|ψk〉 = 〈χm|
∑
l

Ukl|χl〉 =
∑
l

Uklδml = Ukm , (2.33)

〈ψk|χm〉 = U∗km = U †mk , (2.34)

(UU †)kl =
∑
m

UkmU
†
ml =

∑
m

〈χm|ψk〉〈ψl|χm〉 = δkl , (2.35)

where we used on the last step the completeness
∑

m |χm〉〈χm| = 1. Equation (2.35) implies
that the matrix U is unitary.

Now, if a†k are creation operators for the states ψk(r), and b†l are creation operators for the
states χl(r), they should be related by the same matrix U :

a†k =
∑
l

Uklb
†
l ≡

∑
l

〈χl|ψk〉b†l and thus ak =
∑
l

U∗klbl =
∑
l

U †lkbl ≡
∑
l

〈ψk|χl〉bl . (2.36)

The reverse transformation reads (we use unitarity of U , which implies U−1 = U †):

b†l =
∑
k

U †lka
†
k ≡

∑
k

〈ψk|χl〉a†k and bl =
∑
k

Uklak ≡
∑
k

〈χl|ψk〉ak . (2.37)
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Check that the canonical commutation relations preserve their form under a basis transforma-
tion. Consider for example bosons, so that [ak, a

†
k′ ] = δkk′ . In the transformed basis we have

then:
[bl, b

†
l′ ] =

∑
k,k′

UklU
†
l′k′ [ak, a

†
k′ ] =

∑
k,k′

UklU
†
l′k′δkk′ =

∑
k

UklU
†
l′k = δll′ , (2.38)

so that the form of commutation relations is indeed preserved as expected.
The form of the second-quantized Hamiltonian (2.24) is also preserved with respect to basis

transformation. (The matrix elements there should be of course calculated in the same basis
to which the creation and annihilation operators correspond).

Consider a non-interacting system,

Ĥ =
∑
kk′

(H0)kk′a
†
kak′ . (2.39)

Under basis transformation, this Hamiltonian becomes

Ĥ =
∑
ll′

(H̃0)ll′b
†
l bl′ , (2.40)

where
(H̃0)ll′ =

∑
kk′

Ukl(H0)kk′U
†
l′k′ , i.e., H̃0 = UTH0(UT )† . (2.41)

Since H0 is a Hermitian matrix, one can choose a unitary matrix UT that diagonalizes it:

H̃0 = diag(ε1, ε2, . . .) , i.e., (H̃0)ll′ = εlδll′ , (2.42)

so that
Ĥ =

∑
l

εlb
†
l bl . (2.43)

Eigenstates of Ĥ are then Fock-space basis states Φn1,n2,... in the basis corresponding to oper-

ators b†l , bl, and eigenenergies are En1,n2,... =
∑

l nlεl.

2.1.4 Field operators

Let us perform a transformation from the basis of single-particle states ψk to the basis labeled
by the spatial coordinate r. The field operator is an operator in the Fock space given by

Ψ̂(r) =
∑
k

akψk(r) . (2.44)

Here the functions ψk(r) serve as coefficients. In the same way one defines

Ψ̂†(r) =
∑
k

ψ∗k(r)a†k . (2.45)

These formulas are a special case of the transformation (2.37). We calculate the commutation
relations of these new operators. Let us first consider bosons:

[Ψ̂(r), Ψ̂†(r′)] =
∑
k,k′

ψk(r)ψ∗k′(r
′) [ak, a

†
k′ ]︸ ︷︷ ︸

δkk′

=
∑
k

ψk(r)ψ∗k(r
′) = δ(r− r′) , (2.46)

[Ψ̂(r), Ψ̂(r′)] = [Ψ̂†(r), Ψ̂†(r′)] = 0 . (2.47)
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For fermions one obtains in the same way:

{Ψ̂(r), Ψ̂†(r′)} = δ(r− r′) , {Ψ̂(r), Ψ̂(r′)} = {Ψ̂†(r), Ψ̂†(r′)} = 0 . (2.48)

One can put the above formulas together in the form

[Ψ̂(r), Ψ̂†(r′)]∓ ≡ Ψ̂(r)Ψ̂†(r′)∓ Ψ̂†(r′)Ψ̂(r) = δ(r− r′) , (2.49)

where the upper sign corresponds to bosons and the lower one to fermions.
Performing the transformation in Eqs. (2.24), (2.31), we express the Hamiltonian in terms

of the field operators:

Ĥ =

∫
dr Ψ̂†(r)H0(r)Ψ̂(r) +

1

2

∫
dr dr′ Ψ̂†(r)Ψ̂†(r′)V (r, r′)Ψ̂(r′)Ψ̂(r) . (2.50)

Up to now we have neglected the existence of spin. Including spin, r 7→ r, σ, we have field
operators Ψ̂σ(r), with the commutation relations

[Ψ̂σ(r), Ψ̂†σ′(r
′)]∓ = δ(r− r′)δσσ′ . (2.51)

The representation in terms of field operators is applicable to any 1-, 2-, (...)-particle
operators. For example, the operator %r0 of density of particles at a given point r0 is written
in the first-quantized form as

%r0 =
N∑
i=1

δ(ri − r0) =
N∑
i=1

%r0(ri) , with %r0(r) = δ(r0 − r) . (2.52)

Thus, in the language of second quantization, the density operator is given by

%̂r0 =

∫
dr Ψ̂†(r)δ(r0 − r)Ψ̂(r) = Ψ̂†(r0)Ψ̂(r0) . (2.53)

The total particle number operator is given by the spatial integral of the density operator:

N̂ =

∫
dr Ψ̂†(r)Ψ̂(r) . (2.54)

For many-body systems in a grand-canonical ensemble, it is convenient to consider as the
Hamilton operator

Ĥ ′ = Ĥ − µN̂ ,

where µ is the chemical potential. With this shift, the non-interacting Hamiltonian becomes

H0(r) 7→ H ′0(r) = − ~2

2m
∇2 + U(r)− µ , (2.55)

i.e., the energy is counted from the chemical potential.
The grand canonical distribution then takes the form

exp

(
−En − µNn

kBT

)
≡ exp

(
− E ′n
kBT

)
T→0−−−→ only ground state E ′0 survives , (2.56)

so that at T = 0 the system is in the ground state of Ĥ ′ with the minimum energy E ′0. Let us
emphasize that the ground state of the many-body system can be essentially changed by the
chemical potential. For example, for a system of electrons in a metal, the ground state of Ĥ
would be a the state without any electron, while the ground state of Ĥ ′—which corresponds
to the T = 0 limit of the grand canonical distribution—is the filled Fermi sea.

In the many-body quantum physics, one frequently calls Ĥ ′ the Hamiltonian and denotes
is again as Ĥ in order to simplify notations.
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2.2 Schrödinger vs. Heisenberg representations

The standard picture in quantum mechanics is the Schrödinger picture, in which the states
are time dependent and obey the time-dependent Schrödinger equation

i~
∂

∂t
|φ(t)〉S = Ĥ|φ(t)〉S . (2.57)

The Hamilton operator Ĥ is t-independent, if there is no external t-dependence. The Schrödinger
equation yields the unitary time evolution of the states described by the evolution operator
U(t, 0) = exp(−iĤt/~):

|φ(t)〉S = exp(−iĤt/~)|φ(0)〉S = U(t, 0)|φ(0)〉S . (2.58)

The evolution operator is unitary: U(t, 0)U †(t, 0) = 1.
In the Heisenberg picture, the wave function is t-independent:

|φ〉 = |φ(0)〉S = U−1(t, 0)|φ(t)〉S = U †(t, 0)|φ(t)〉S.

The t-dependence is then moved from the wave functions to operators:

OH(t) = exp(iĤt/~)OS exp(−iĤt/~) = U †(t, 0)OH(0)︸ ︷︷ ︸
=OS

U(t, 0). (2.59)

Here OH(t) is the operator in the Heisenberg picture and OS the operator in the Schrödinger
picture. The operator OH(t) obeys the Heisenberg equation

i~
∂

∂t
OH(t) = [OH(t), Ĥ] . (2.60)

These two pictures are equivalent when computing matrix elements:

〈φ1(t)|O|φ2(t)〉S = 〈φ1|O(t)|φ2〉H . (2.61)

The Hamilton operator is independent of the picture (no need in subscript “S” or “H”):

ĤH = exp(iĤSt/~)ĤS exp(−iĤSt/~) = ĤS. (2.62)

In the Heisenberg picture, the Hamiltonian is expressed in terms of the t-dependent field
operators Ψ̂(t) in the same way as it is expressed through Ψ̂ in the Schrödinger picture:

Ĥ = exp(iĤt/~)Ĥ exp(−iĤt/~)

= exp(iĤt/~)

{∫
dr Ψ̂†(r)Ĥ0Ψ̂(r) +

1

2

∫∫
dr dr′ Ψ̂†(r)Ψ̂†(r′)V (r, r′)Ψ̂(r′)Ψ̂(r)

}
exp(−iĤt/~)

=

∫
dr Ψ̂†(r, t)Ĥ0(r)Ψ̂(r, t) +

1

2

∫∫
dr dr′ Ψ̂†(r, t)Ψ̂†(r′, t)V (r, r′)Ψ̂(r′, t)Ψ̂(r, t). (2.63)

For Heisenberg operators the commutator

[Ψ̂(r, t), Ψ̂†(r′, t′)]∓ (2.64)

has, in general, a complicated form (it is expressed in terms of Green’s functions of the many-
body problem defined below). However, at equal times t = t′ the commutator becomes simple:

[Ψ̂(r, t), Ψ̂†(r′, t)]∓ = [exp(iĤt/~)Ψ̂(r) exp(−iĤt/~), exp(iĤt/~)Ψ̂(r′) exp(−iĤt/~)]

= exp(iĤt/~)[Ψ̂(r), Ψ̂†(r′)] exp(−iĤt/~) = δ(r− r′) . (2.65)
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2.2.1 Schrödinger equation for Ψ̂(r, t)

Now we use Eq. (2.60) and to derive the evolution equation (analog of Schrödinger equation)
for the field operator in the Heisenberg picture:

i~
∂

∂t
Ψ̂(r, t) = [Ψ̂(r, t), Ĥ]

=

∫
dr [Ψ̂(r, t), Ψ̂†(r, t)Ĥ0(r)Ψ(r, t)]

+
1

2

∫∫
dr dr′ [Ψ̂(r, t), Ψ̂†(r, t)Ψ̂†(r′, t)V (r, r′)Ψ̂(r′, t)Ψ̂(r, t)].

(2.66)

Using Eq. (2.65), we obtain for the required commutators (both for bosons and fermions)

[Ψ̂(r, t), Ψ̂†(r′, t)Ĥ0(r′)Ψ̂(r′, t)] = Ĥ0(r)Ψ̂(r, t)δ(r− r′), (2.67)

and

[Ψ̂(r, t), Ψ̂†(r′, t)Ψ̂†(r′′, t)V (r′, r′′)Ψ̂(r′, t)Ψ̂(r′′, t)] = δ(r− r′′)Ψ̂†(r′, t)V (r′, r′′)Ψ̂(r′, t)Ψ̂(r′′, t)

+δ(r− r′)Ψ̂†(r′′, t)V (r′, r′′)Ψ̂(r′, t)Ψ̂(r′′, t). (2.68)

Substituting Eqs. (2.67) and (2.68) into Eq. (2.66), and using V (r′, r′′) = V (r′′, r′), we arrive
at

i~
∂

∂t
Ψ̂(r, t) =

(
−~2∇2

2m
+ U(r)− µ

)
Ψ̂(r, t) +

∫
dr′ Ψ̂†(r′, t)V (r, r′)Ψ̂(r′, t)Ψ̂(r, t) . (2.69)

This equation is nonlinear, so that the field operators behave in a nontrivial way. The term
−µ in brackets in Eq. (2.69) is present if the evolution of the Heisenberg operator Ψ̂(r, t) is

defined via the Hamiltonian Ĥ ′ = Ĥ − µN̂ , and is absent if the original Hamiltonian Ĥ is
used, see Eq. (2.55).

2.3 Correlations in a free Fermi gas

Before turning to interacting systems, let us discuss some applications of the second-quantization
formalism to a non-interacting system. Specifically, we consider a free (i.e., non-interacting)
Fermi gas. Even though the system is non-interacting, it is characterized by correlations that
are caused by Fermi statistics.

We consider a gas of N free electrons (fermions with spin 1/2). Single-particle eigenstates
that diagonalize the free Hamiltonian are plane waves. The ground state is given by

|Φ0〉 =
∏

k ,σ: |k |<kF

c†k ,σ|0〉 , (2.70)

where k is the wave vector (related to the momentum p via p = ~k ) and c†k ,σ is a cre-
ation operator for an electron with wave vector k and spin projection σ. The value of kF is
determined by the number of particles N . Namely

N =

 ∑
k ,σ: |k |<kF

1

 = 2

 ∑
k : |k |<kF

1

 =
2V

(2π)3

∫
|k |<kF

d3k = V · k
3
F

3π2
(2.71)
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Thus n = k3
F/3π

2 and, equivalently, kF = (3π2n)1/3, where n ≡ N/V is the density of electrons.
The field operators are

Ψσ(r) =
1√
V

∑
k

eik rck σ . (2.72)

Check the average density:

〈Φ0|ρ̂(r)|Φ0〉 =
∑
σ

〈Φ0|Ψ̂†σ(r)Ψ̂σ(r)|Φ0〉

=
∑
σ

∑
k ,k ′

e−ik
′r

√
V
· e

ik r

√
V
〈Φ0|ĉ†k ,σ ĉk ′,σ|Φ0〉

=
∑
σ

∑
k ,k ′

e−ik
′r

√
V
· e

ik r

√
V
δk ,k ′ Θ(kF − |k |) = n . (2.73)

We used here
〈Φ0|ĉ†k ,σ ĉk ′,σ′ |Φ0〉 = δkk ′δσσ′Θ(kF − |k |) (T = 0). (2.74)

2.3.1 One-particle correlation function

The one-particle correlation function (equivalently, one-particle density matrix) is defined
via

Gσ(r− r′) = 〈Φ0|Ψ̂†σ(r)Ψ̂σ(r′)|Φ0〉 . (2.75)

Using (2.74), we get

Gσ(r− r′) =
1

V

∑
k ,k ′

e−ik r+ik ′r′〈Φ0|ĉ†k ,σ ĉk ′,σ|Φ0〉

=

∫
|k |<kF

d3k

(2π)3
e−ik (r−r′) =

3n

2
· (sinx− x cosx)

x3
, x ≡ kF |r− r′|. (2.76)

The diagonal (r = r′) elements of the density matrix are Gσ(0) = n/2 (the factor 1/2 because
n was defined as a total density for two spin projections). The off-diagonal (r 6= r′) elements
decay towards zero with increasing x = kF |r − r′|. Sharp Fermi edge leads to quantum-
mechanical interference effects on the scale of the Fermi wave length.

2.3.2 Two-particle correlation function

Now we define a pair correlation function, which is the probability density to find a particle
at r with spin σ and another particle at r′ with spin σ′:

G
(2)
σ,σ′(r− r′) = 〈Φ0|Ψ̂†σ(r)Ψ̂†σ′(r

′)Ψ̂σ′(r
′)Ψ̂σ(r)|Φ0〉

= [〈Φ0|ρ̂σ(r)ρ̂σ′(r
′)|Φ0〉 − δ(r− r′)δσ,σ′ · n] , (2.77)

where ρσ(r) = Ψ̂†σ(r)Ψ̂σ(r) is the density operator.
We have

G
(2)
σ,σ′(r− r′) =

1

V 2

∑
k ,k ′,q ,q ′

e−i(k−k
′)r · e−i(q−q ′)r′〈Φ0|ĉ†k ,σ ĉ

†
q ,σ′ ĉq ′,σ′ ĉk ′,σ|Φ0〉 . (2.78)

After action of the product ĉ†k ,σ ĉ
†
q ,σ′ ĉq ′,σ′ ĉk ′,σ on |Φ0〉, we should again get |Φ0〉 (otherwise the

matrix element is zero).
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If σ 6= σ′, this is only possible for q = q ′ and k = k ′. Thus,

G
(2)
σ,σ′(r− r′) =

(
1

V

)2∑
k ,q

〈Φ0|n̂k ,σn̂q ,σ′ |Φ0〉 =
(n

2

)2

, σ 6= σ′ , (2.79)

where nk ,σ = c†k ,σck ,σ. Thus, there is no correlations for σ 6= σ′: the correlation function is
equal to its disconnected part 〈Φ0|ρ̂σ(r)|Φ0〉〈Φ0|ρ̂σ′(r′)|Φ0〉 = (n/2)2.

If, however, σ = σ′, then there are two possibilities to get a non-zero matrix element entering
Eq. (2.78):

(i) q = q ′ and k = k ′, or (ii) q = k ′ and k = q ′.

This yields

〈Φ0|ĉ†k ,σ ĉ
†
q ,σ ĉq ′,σ ĉk ′,σ|Φ0〉 = nk ,σnq ,σ(δk ,k ′δq ,q ′ − δk ,q ′δq ,k ′). (2.80)

This is an example of a general Wick theorem, which plays a very important role in many-body
quantum theory (to be studied in TKM-2 course). Substituting Eq. (2.80) into Eq. (2.78), we
obtain

G(2)
σ,σ(r− r′) =

(
1

V

)2 ∑
|k |<kF , |q |<kF

(
1− e−i(k−q )(r−r′)

)

=
(n

2

)2

− [Gσ(r− r′)]
2

=
(n

2

)2
[

1−
(

3(sinx− x cosx)

x3

)2
]
, (2.81)

where again x = kF |r − r′|. The constant term (n/2)2 in Eq. (2.81) corresponds to a discon-
nected part of the correlation function, 〈Φ0|ρ̂σ(r)|Φ0〉〈Φ0|ρ̂σ′(r′)|Φ0〉; the second term is the
connected correlation function.

Figure: gσσ(r) ≡
(

2

n

)2

G(2)
σ,σ(r)

as a function of x = kF r.

A “hole” due to the Pauli principle
at x ∼ 1 (i.e. r ∼ k−1

F ) is mani-
fest. Electron seem to “repel” each
other, although there is no real inter-
action. The effect is entirely due to
Fermi statistics.

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

One can check that
n

2

∫
d3r(gσ,σ(r)− 1) = −1 , (2.82)

i.e., the “hole” corresponds to exactly one “missing” electron.

2.4 Weakly interacting Bose gas

2.4.1 Hamiltonian, Bose-Einstein condensation, and Bogoliubov ap-
proximation

We consider a system of bosons with a weak repulsive interaction V (r− r′). The Hamiltonian
is given by Eq. (2.50). The single-particle Hamiltonian H0 is that of free particles in a box
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of volume V . The interaction is assumed to be short-ranged, and we approximate it by a
delta-function interaction, V (r− r′) = U0δ(r− r′) with U0 > 0 (repulsion). The Hamiltonian
thus reads

Ĥ =

∫
dr

[
−Ψ̂†(r)

~2

2m
∇2Ψ̂(r) +

U0

2
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

]
, (2.83)

or, equivalently, in terms of momentum-space creation and annihilation operators, with com-
mutation relations [ap, a

†
p′ ] = δpp′ ,

Ĥ =
∑
p

ε(0)
p a†pap +

U0

2V

∑
p1+p2=p3+p4

a†p1
a†p2

ap3ap4 , (2.84)

where ε
(0)
p = p2/2m.

We consider the limit of low temperature. Let N be the total number of particles. In a
non-interacting Bose gas, almost all particles are then in condensate, i.e., in the state with
momentum p = 0. We assume a weak interaction, so that this is the case also in the presence
of interaction. We denote the number of particles in the p = 0 state by N0, i.e. 〈a†0a0〉 = N0.
Since N0 is macroscopically large, we make an approximation a†0 ≈ N1/2 and a0 ≈ N1/2, thus
replacing these operators with numbers. Further, since we assume that most of the particles
are in the condensate (p = 0 state), we keep in the Hamiltonian only terms up to second order
with respect to a†p, ap with p 6= 0. This yields:

Ĥ =
N2

0U0

2V
+
∑
p6=0

(ε(0)
p + 2n0U0)a†pap +

n0U0

2

∑
p6=0

(a†pa
†
−p + apa−p) , (2.85)

where n0 = N0/V .
The total number of particles is N = N0 +

∑
p6=0 a

†
pap, so that, within the same approxi-

mation as above , N2 ' N2
0 + 2N0

∑
p6=0 a

†
pap. Using this in the first term in Eq. (2.85), we

get

Ĥ =
N2U0

2V
+
∑
p6=0

[
(ε(0)
p + n0U0)a†pap +

n0U0

2
(a†pa

†
−p + apa−p)

]
=

N2U0

2V
+
∑′

p6=0

[
(ε(0)
p + n0U0)(a†pap + a†−pa−p) + n0U0(a†pa

†
−p + apa−p)

]
. (2.86)

In the last form, the prime on the sum means that the summation goes over half of the
momentum space p 6= 0, i.e., that each pair p,−p is counted only once.

2.4.2 Bogoliubov transformation

The structure of Ĥ in Eq. (2.86) is simple as it decouples in a sum of independent terms
corresponding each to only a pair of momenta p,−p. What is special, however, is that it
contains not only usual terms of the type a†pap but also products of two creation operators

or two annihilation operators, a†pa
†
−p and apa−p. There is a number of very important prob-

lems in physics where such Hamiltonians arise, for either bosons or fermions, including, in
particular, superfluidity, antiferromagnetism, and superconductivity. The way to treat them
was pioneered by Bogoliubov, and the corresponding canonical transformation described be-
low bears his name. We present a general analysis first (for bosons) and then apply it to the
Hamiltonian (2.86).
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Consider a Hamiltonian

Ĥ = ε0(a†1a1 + a†2a2) + λ(a†1a
†
2 + a2a1) , ε0 > 0 , (2.87)

with canonical Bose commutation relations [ai, a
†
j] = δij and [a1, a2] = [a†1, a

†
2] = 0. (We will

later apply it to Eq. (2.86) with a1 → ap and a2 → a−p.) The idea is to diagonalize the
Hamiltonian. For this purpose, we introduce new operators

b1 = ua1 + va†2 , b2 = ua2 + va†1 , (2.88)

with coefficients u and v that remain to be specified. In general, u and v can be complex but
we take them real as it will be sufficient for our purposes. Calculating the commutators, we
get

[b1, b
†
1] = [b2, b

†
2] = u2 − v2 [b1, b2] = [b1, b

†
2] = 0 . (2.89)

We require that the operators bi satisfy bosonic canonical commutation relations. This is
fulfilled if u and v satisfy

u2 − v2 = 1 . (2.90)

The inverse transformation then reads

a1 = ub1 − vb†2 , a2 = ub2 − vb†1 . (2.91)

Substituting this in Eq. (2.87), we find

Ĥ = 2v2ε0−2uvλ+[ε0(u2 +v2)−2uvλ](b†1b1 + b†2b2)+ [λ(u2 +v2)−2uvε0](b†1b
†
2 + b2b1) . (2.92)

We require now that the term proportional to b†1b
†
2 + b2b1 vanishes, i.e.,

λ(u2 + v2)− 2uvε0 = 0 . (2.93)

In view of Eq. (2.90), we can parametrize u and v via

u = cosh θ , v = sinh θ . (2.94)

Equation (2.93) then becomes

tanh 2θ =
λ

ε0
. (2.95)

It follows that

cosh 2θ = (1− tanh2 2θ)−1/2 =

[
1

1− (λ/ε0)2

]1/2

=
ε0
ε
, (2.96)

where we have defined

ε =
√
ε20 − λ2 , (2.97)

where the positive branch of square root should be taken, ε > 0. Note that we should have
|λ| < ε0 in the initial Hamiltonian; otherwise there will be an instability in the theory.

From Eqs. (2.94) and (2.96) we obtain

u2 =
1

2
(cosh 2θ + 1) =

1

2

(ε0
ε

+ 1
)
, v2 =

1

2
(cosh 2θ − 1) =

1

2

(ε0
ε
− 1
)
, (2.98)

and thus

u2 + v2 =
ε0
ε
, 2uv =

λ

ε
. (2.99)
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Substituting this in (2.92), we obtain the final result for the Hamiltonian after the Bogoliubov
transformation:

Ĥ = ε− ε0 + ε(b†1b1 + b†2b2) , (2.100)

with ε given by Eq. (2.97). This fully solves the problem, since the Hamiltonian has now a
standard form with two independent kinds of non-interacting bosons. The ground state energy
is ε − ε0, and the ground state is determined by the conditions bi|0〉 = 0 for i = 1, 2. The
excited states are obtained by acting on the ground state with operators b†1 and b†2; they are
characterized by the numbers n1 and n2 of the two kinds of bosons. Each excitation adds
energy ε.

2.4.3 Elementary excitations in the weakly interacting Bose gas

We apply now the results of Sec. 2.4.2 to the Hamiltonian (2.86). For every pair of momenta
p,−p, we have a contribution of the type (2.87) in the Hamiltonian, with a1 → ap and

a2 → a−p, and with ε0 → ε
(0)
p + n0U0 and λ → n0U0. The Bogoliubov transformation (2.91)

reads
bp = upap + vpa

†
−p , b−p = upa−p + vpa

†
p , (2.101)

with the inverse transformation

ap = upbp − vpb†−p , a−p = upb−p − vpb†p , (2.102)

where

u2
p =

1

2

(
ε

(0)
p + n0U0

εp
+ 1

)
, v2

p =
1

2

(
ε

(0)
p + n0U0

εp
− 1

)
, (2.103)

and

εp =

√(
ε

(0)
p + n0U0

)2

− (n0U0)2 =

√(
ε

(0)
p

)2

+ 2ε
(0)
p n0U0 . (2.104)

The Hamiltonian takes the form

Ĥ =
N2U0

2V
− 1

2

∑
p6=0

[
ε(0)
p + n0U0 − εp

]
+
∑
p6=0

εpb
†
pbp , (2.105)

so that the system possesses bosonic excitations with the famous Bogoliubov dispersion law
εp,

εp =

√(
p2

2m

)2

+
n0U0

m
p2 . (2.106)

These excitations are created by operators b†p = upa
†
p + vpa−p. The ground state |0〉 satisfies

bp|0〉 = 0 for all p 6= 0 and has the energy

E0 =
N2U0

2V
− 1

2

∑
p6=0

[
ε(0)
p + n0U0 − εp

]
. (2.107)

Let us analyze the dispersion law (2.106). For sufficiently large momenta, it is close to the
quadratic free-particle dispersion:

εp '
p2

2m
+ n0U0 , p�

√
2mn0U0 , (2.108)
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with the second term being a relatively small correction to the dominant term p2/2m. On the
other hand, for low momenta, the dispersion law is linear,

εp ' cp with c =

√
n0U0

m
, p�

√
2mn0U0 . (2.109)

Thus, for low momenta p (equivalently, low wave vectors k = p/~, or large wave length
2πk−1 = 2π~/p), the excitations have collective character. These low-momenta collective
excitations can be viewed as phonons, which are quantized sound waves, with c =

√
n0U0/m

being the sound velocity. The crossover between these collective phonon excitations with
linear dispersion and quadratic free-particle dispersion of excitations takes place at wave vector
k ∼
√

2mn0U0/~ or, equivalently, at length scale of order of

ξ =
~√

2mn0U0

. (2.110)

The length ξ, which is called “coherence length” or “healing length”, thus determines the
characteristic scale for the collective behavior of the system.

The ground state energy E0 is dominated by the first term in Eq. (2.107) under the con-
dition of weak interaction or, equivalenty, diluteness of the gas,

U0m

~2
� n−1/3 . (2.111)

The l.h.s. of this inequality is the characteristic length associated with the interaction potential
U0 (known as scattering length), while the r.h.s. is a typical distance between particles. Under
this condition,

E0 '
N2U0

2V
. (2.112)

Consequently, the chemical potential is given by

µ =

(
∂E0

∂N

)
V,T

' U0
N

V
= U0n . (2.113)

Note that, at variance with the non-interacting Bose gas, for which µ = 0 at zero temperature,
in the presence of interaction we have µ > 0.

2.5 Landau criterion of superfluidity

To explain that the dispersion (2.106) of elementary excitations leads to superfluidity, we invoke
the Landau criterion of superfluidity. Consider a fluid flowing in a pipe at zero temperature.
In the resting (“laboratory”) reference frame, the pipe is at rest, and the fluid moves with a
velocity v . One wants to find out whether any friction (i.e., energy dissipation) occurs. For
this purpose, it is useful first to consider the whole system in a moving frame, in which the
fluid is at rest and the pipe moves with the velocity −v .
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Let P and E be the momentum and energy of the fluid in this reference frame. Further, let
the spectrum of excitations consist of quasiparticles with momentum and energy {p , ε(p )}.
Then, excitation of a quasiparticle in the frame, in which the fluid rests, leads to change of
momentum and energy of the fluid:

∆P = p , ∆E = ε(p ) . (2.114)

Now we make a Galilei transformation to the laboratory frame (in which the pipe rests). The
momentum and energy transform according to relations known from classical mechanics:

P ′ = P +Mv , E ′ = E + P v +
Mv2

2
, (2.115)

where M is the mass of the fluid. (These formulas follow from summing the momenta and
kinetic energies of particles: p ′ = mu ′ = m(u + v ) and ε′ = m(u ′)2/2 = m(u + v )2/2;
potential energy is not affected by the transformation). Thus, the change of the energy in the
laboratory frame associated with the quasiparticle excitation (2.114) is

∆E ′ = ∆E + ∆P · v = ε(p ) + v p . (2.116)

Since the pipe is at rest in the laboratory frame, it cannot provide energy to the fluid. There-
fore, the quasiparticle can be excited only if its excitation lowers the energy of the system, i.e.,
if ∆E ′ < 0. If this is the case for some of possible excitations, they will be excited, so that
there will be a finite friction, i.e., there will be no superfluidity. Let us assume an isotropic
dispersion ε(p ) = ε(p). Then, for a given p = |p |, the minimal value of ∆E ′ is reached for p
directed opposite to v :

∆E ′ = ε(p)− vp , p = |p | > 0 . (2.117)

The system is thus superfluid if ∆E ′ as given by Eq. (2.117) is positive for any p > 0. This
can be equivalently rewritten as

v < min
p

(
ε(p)

p

)
≡ vc , (2.118)

which is the famous Landau criterion for superfluidity. Here vc is the critical velocity. For
v < vc, no excitations will be created, implying superfluidity. Only for v > vc excitations with
∆E ′ < 0 appear, and dissipation (i.e., friction) emerges. Thus, as long as vc > 0, the system
is superfluid for sufficiently small flow velocities, v < vc.

Application to a (weakly-interacting) Bose system

For the Bogoliubov excitation spectrum (2.106), the critical velocity vc as determined by
Eq. (2.118) is given by the sound velocity, vc = c > 0, implying superfluidity for flow velocitiy
v < c. Note that the sound velocity is c = (U0n0/m)1/2, Eq. (2.109), so that for a free Bose
gas (U0 = 0), we have vc = 0. i.e., no superfluidity.

Application to a Fermi system

The Landau criterion of superfluidity can be also applied to an interacting Fermi system that
may become superconducting, as will be discussed in Sec. 2.8.
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2.6 Long-range order, symmetry breaking, and order

parameter for a Bose fluid

2.6.1 Wave function of condensate

Consider one-particle correlation function (density matrix) for bosons

G(r− r′) = 〈Φ0|Ψ̂†(r)Ψ̂(r′)|Φ0〉 . (2.119)

Obviously, G(0) = n (density of particles). To analyze the dependence on distance, we go the
momentum representation:

Ψ̂(r) =
1√
V

∑
p

eip r/~ ap . (2.120)

For high temperatures, for which there is no Bose-Einstein condensation, i.e., no macroscopic
occupation of the p = 0 state, the sum can be replaced by an integral, yielding

G(r− r′) =

∫
d3p

(2π~)3
eip (r−r′)/~ 〈np〉 , (2.121)

where 〈np〉 = 〈Φ0|a†p ap |Φ0〉 is the distribution of particles over momenta. This leads to

G(r− r′)→ 0 at |r− r′| → ∞ , (2.122)

cf. an analogous calculation for fermions in Sec. 2.3.1. On the other hand, for low T there is
Bose-Einstein condensation, so that the term with p = 0 is crucially important,

Ψ̂(r) =
1√
V
a0 +

1√
V

∑
p 6=0

eip r/~ ap . (2.123)

The p = 0 term gives now a constant contribution to G(r−r′) equal to the condensate density
n0 = 〈Φ0|a†0a0|Φ0〉, so that the correlation function remains nonzero at infinite separation:

G(r− r′)→ n0 at |r− r′| → ∞ , (2.124)

This is frequently called “off-diagonal long-range order” (and abbreviated as ODLRO), since
the long-range order here manifests itself in off-diagonal components (r 6= r ′) of one-particle
density matrix.

Equation (2.123) has the form

Ψ̂(r) = Ψ̂0(r) + δΨ̂(r) , (2.125)

with the first term corresponding to the condensate and the second term to the rest. Since
number of particles in the condensate is large, N0 = n0V , we can consider Ψ0(r) as a number
rather than an operator, as was done above in the Bogoliubov approximation (Sec. 2.4.1).

More accurately, Ψ̂(r) changes the number of particles in the condensate by one, and we can
define

〈N − 1|Ψ̂0(r)|N〉 ≡ Ψ0(r) , 〈N |Ψ̂†0(r)|N − 1〉 ≡ Ψ∗0(r) , (2.126)

where |N〉 and |N − 1〉 differ only by a number of particles in the condensate (N0 vs. N0− 1)

and thus are physically equivalent up to 1/N0 corrections. In this sense, we can replace Ψ̂(r)
by Ψ0(r). The function Ψ0(r) is called “wave function of condensate”. In Eq. (2.123), it
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is Ψ0(r) = N
1/2
0 V

−1/2
0 = n

1/2
0 , but, more generally (e.g., in spatially varying fields, or if the

fluid flows), Ψ0(r) may vary:

Ψ0(r) = n
1/2
0 (r)eiS(r) . (2.127)

The wave function of condensate plays the role of the order parameter for the superfluid
state (distinguishing it from the normal state).

For stationary states, the time-dependence of the condensate wave function is

Ψ0(r, t) = 〈N − 1|eiĤt/~Ψ̂0(r)e−iĤt/~|N〉 = e−i(EN−EN−1)t/~〈N − 1|Ψ̂0(r)|N〉 = e−iµt/~Ψ0(r) ,
(2.128)

where we have used

µ =
∂E0(N)

∂N
= E0(N)− E0(N − 1) . (2.129)

2.6.2 Gross-Pitaevskii equation

To derive an equation for the condensate wave function, we begin with the evolution equation
(2.69) for the Heisenberg operator Ψ̂(r, t),

i~
∂

∂t
Ψ̂(r, t) =

[
−~2∇2

2m
+ Uext(r, t) +

∫
dr′ Ψ̂†(r′, t)V (r− r′)Ψ̂(r′, t)

]
Ψ̂(r, t) . (2.130)

where Uext(r, t) is an external potential (which can be in general also time-dependent) and
V (r− r′) two-particle interaction. As above, we consider a weak local interaction V (r− r′) =
U0δ(r − r′), see the Hamiltonian Eq. (2.83). Further, we focus on low temperatures, when

nearly all particles are in the condensate, n0 ≈ n, and thus replace the operator Ψ̂ by the
condensate wave function Ψ0. Equation (2.130) then becomes

i~
∂

∂t
Ψ0(r, t) =

[
−~2∇2

2m
+ Uext(r, t) + U0|Ψ0(r, t)|2

]
Ψ0(r, t). (2.131)

Equation (2.131) is the Gross-Pitaevskii equation for the wave function of the condensate
(sometimes also called “non-linear Schrödinger equation”). This equation has proven to be
very useful in describing various aspects of the physics of superfluids, including superfluid hy-
drodynamics, excitations (vortices, solitons, small-amplitude oscillations), various geometries,
etc.

2.6.3 Stationary solutions and U(1) symmetry breaking

Assume that the external potential Uext is time-independent. In this situation, we may look
for stationary solutions of the Gross-Pitaevskii equation. According to Eq. (2.128), the t-
dependence of the condensate wave function in a stationary state is

Ψ0(r, t) = Ψ0(r)e−iµt/~ . (2.132)

Substituting this in Eq. (2.131), we obtain the stationary form of this equation:[
−~2∇2

2m
+ Uext(r)− µ+ U0|Ψ0(r)|2

]
Ψ0(r) = 0 . (2.133)

This equation can be presented in the form

δ

δΨ∗0(r)
E ′{Ψ0,Ψ

∗
0} = 0 , (2.134)
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where E ′ is the (grand-canonical) energy functional

E ′{Ψ0,Ψ
∗
0} = E − µ

∫
dr|Ψ0|2 =

∫
dr

[
~2

2m
|∇Ψ0|2 + Uext(r)|Ψ0|2 − µ|Ψ0|2 +

U0

2
|Ψ0|4

]
.

(2.135)
The solution of the Gross-Pitaevskii equation thus corresponds to a minimum of the energy
E ′.

Consider the case Uext(r) = 0. The minimum of E ′ is the provided by a spatially uniform
(r-independent) configuration Ψ0(r) = Ψ0. The energy functional on such configurations takes
the form

E ′ = V

(
−µ|Ψ0|2 +

U0

2
|Ψ0|4

)
. (2.136)

We recall that µ > 0 and U0 > 0. The function (2.136) has the form of a “mexican hat”
potential. It is of the same form as in the Ginzburg-Landau theory on the broken-symmetry
side. Let us emphasize a difference, however: the Ginzburg-Landau theory is formulated for
the vicinity of a phase transition, while here we deal with the system at zero (or very low)
temperature, i.e., deeply in the superfluid (broken-symmetry) phase. Near the transition, the
Landau functional will have a similar structure but the coefficients will be very different.

The minimum of the functional (2.136) is achieved at

|Ψ0|2 = µ/U0 , (2.137)

in agreement with Eq. (2.113). Importantly, Eq. (2.137) fixes the amplitude but not the phase
of Ψ0. Thus, there is the whole family of solutions,

Ψ0 = |Ψ0|eiα = (µ/U0)1/2 eiα , (2.138)

with arbitrary phase α. This is a manifestation of the U(1) symmetry of the theory cor-
responding to the particle number conservation. Choosing one particular α breaks this
symmetry. All solutions with a constant α are physically equivalent (since multiplication of
a wave function by a constant phase factor does not have any implications for physical ob-
servables). Nevertheless, the symmetry breaking is of crucial importance: allowing the phase
α to change in space and time yields excitations, see below.

2.6.4 Small-amplitude oscillations. Long-wave-length oscillations
as Goldstone mode.

We consider now small-amplitude oscillations with respect to a stationary configuration (2.132).
(This is a classical analysis; upon quantising, we should get low-lying excitations of the system,
as we discuss in the end.) We look for a solution of the Gross-Pitaevskii equation (2.131) in
the form

Ψ0(r, t) = Ψ′(r, t)e−iµt/~ = [Ψ0(r) + χ(r, t)] e−iµt/~ , (2.139)

with a small χ(r, t). Equation for Ψ′(r, t) is obtained by substituting Eq. (2.139) into Eq. (2.131)
(with a time-independent external potential Uext):

i~
∂

∂t
Ψ′(r, t) =

[
−~2∇2

2m
+ Uext(r)− µ+ U0|Ψ′(r, t)|2

]
Ψ′(r, t) . (2.140)

This equation can be presented in the form

i~
∂

∂t
Ψ′(r, t) =

δE ′

δΨ′∗(r, t)
, (2.141)
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where E ′ is the functional (2.135). We substitute Ψ′(r, t) = Ψ0(r) + χ(r, t) in Eq. (2.140) and
linearize with respect to a small term χ(r, t). Further, we look for a solution oscillating with
a certain frequency ω. Since the non-linear term in Eq. (2.140) gives rise not only to χ(r, t)
but also to χ∗(r, t), we should look for a solution of the form

χ(r, t) = u(r)e−iωt + v∗(r)eiωt . (2.142)

Substituting this ansatz and separating terms proportional to e−iωt and to eiωt, we obtain a
system of two equations:

~ωu =

(
−~2∇2

2m
+ Uext(r)− µ+ 2U0|Ψ0(r)|2

)
u+ U0Ψ2

0(r) v ,

−~ωv =

(
−~2∇2

2m
+ Uext(r)− µ+ 2U0|Ψ0(r)|2

)
v + U0Ψ2

0(r)u . (2.143)

We focus now on a situation of a uniform gas: Uext(r) = 0, so that |Ψ0(r)|2 = n0 ≈ n.
We further use the relation µ = U0n. Without restricting generality, we can choose the
condensate Ψ0 around which oscillations are considered as real, Ψ0 =

√
n. Since equations are

now translationally-invariant, the solutions have the form of plane waves:

u(r) = u eikr , v(r) = v eikr . (2.144)

This yields the following system of equations for the amplitudes u and v:

~ωu =
~2k2

2m
u+ U0n(u+ v) ,

−~ωv =
~2k2

2m
v + U0n(u+ v) , (2.145)

or, in the matrix form−~ω +
~2k2

2m
+ U0n U0n

U0n ~ω +
~2k2

2m
+ U0n

(u
v

)
= 0 . (2.146)

For a non-trivial solution to exist, the determinant should be zero, which yields

(~ω)2 =

(
~2k2

2m

)2

+
~2k2

m
U0n . (2.147)

Equation (2.147) is the final result for the frequency of oscillations as a function of the wave
vector k. In the quantum language, the momentum and energy of excitations are related to
k and ω via p = ~k and εp = ~ω. Equation (2.147) then becomes identical to the Bogoliubov
dispersion law (2.106). Thus, Bogoliubov excitations correspond to quantized oscillations
described by the Gross-Pitaevskii equation.

For small wave vectors, k → 0, we have ω → 0 according to Eq. (2.147). Let’s inspect the
character of these long-wave-length excitations. From Eq. (2.146), we immediately see that
u ≈ −v at small k and ω. This means that χ(r, t) as given by Eq. (2.142) is purely imaginary.
Since Ψ′(r, t) = Ψ0 +χ(r, t) with a real Ψ0, this corresponds to oscillations of the phase of the
condensate. These excitations have ω → 0 at k → 0 because the energy E ′ is invariant with
respect to the transformation Ψ0 7→ Ψ0e

iα with a constant α. Therefore, the long-wave-length
excitations represent a Goldstone mode associated with spontaneous breaking of the U(1)
symmetry.

Goldstone modes of excitations (Goldstone bosons) are generically associated with spon-
taneously broken continuous symmetries. A paradigmatic example is spin waves (magnons)
in einem Heisenberg ferromagnet.
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2.6.5 Superfluid velocity

Multiplying the Gross-Pitaevskii equation (2.131) by Ψ∗0(r, t) and subtracting the complex
conjugate, one obtains

∂|Ψ0|2

∂t
+ ∇

[
~

2mi
(Ψ∗0∇Ψ0 −Ψ0∇Ψ∗0)

]
= 0 . (2.148)

(Note that the non-linear term cancels, so that this is the same equation as for the conventional
Schrödinger equation.) This is the continuity equation, with the density n = |Ψ0|2. The
expression in square brackets is thus the current, which can be written in the form j = nv ,
with velocity

v =
~

2mi

Ψ∗0∇Ψ0 −Ψ0∇Ψ∗0
|Ψ0|2

. (2.149)

Separating the absolute value and the phase of the condensate wave function,

Ψ0(r, t) = n1/2(r, t)eiS(r,t) , (2.150)

we obtain from Eq. (2.149)

v =
~
m
∇S . (2.151)

Thus, the superfluid velocity is proportional to the gradient of the phase of the condensate
wave function.

2.7 Fermi gas with an attractive interaction: Cooper

instability

2.7.1 Attractive interaction between electrons mediated by lattice

As discussed in previous sections, bosons experience at low temperatures Bose-Einstein con-
densation, which can be understood as spontaneous U(1) symmetry breaking. In presence
of repulsive interaction at short distances (always present in physical systems), this leads to
superfluidity.

Now we consider a system of interacting fermions. The most important realization of such
a system is electron gas in a metal. The phenomenon analogous to superfluidity in this case is
superconductivity, i.e., vanishing of electric resistance. It was discovered experimentally by
H. Kamerlingh Onnes in 1911. While the superconductivity is certainly one of most important
phenomena in condensed matter physics, it has taken almost half a century to develop a
microscopic theory of this phenomenon. This was done in 1957 by Bardeen, Cooper, and
Schrieffer (BCS theory, see below). An important step towards this theory was understanding
of an instability of the conventional (filled Fermi see) ground state of a gas of fermions in the
presence of attractive interaction between fermions (Cooper instability, 1956).

The most conventional interaction between electrons is Coulomb interaction, which is of
course repulsive. Where does attractive come from in physical systems? Within the most
standard mechanism, which is operative in conventional superconductors, the electron-electron
attraction originates from electron-phonon interaction, i.e., the interaction between electrons
and ions forming the lattice. A simple way to understand the physics of the electron-electron
attraction mediated by lattice is as follows. An electron (which is negatively charged) attracts
ions, creating a positively-charged lattice density perturbation around the position of the
electron. This positive charge attracts another electron, thus leading to an effective electron-
electron attraction. Importantly, ions are much heavier than electrons and thus move relatively
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slowly. The characteristic frequency of ion vibrations is the Debye frequency ωD. Since the
frequency of a harmonic oscillator with a mass M scales ∝M−1/2, we can estimate

~ωD ∼
√
m

M
εF , (2.152)

where m is electron mass, M is ion mass, and εF is Fermi energy (which is the characteristic
electronic energy scale), so that ~ωD is roughly two orders of magnitude smaller than εF .
Typical values for metals are εF ∼ 2 – 10 eV and ~ωD ∼ 0.01 – 0.1 eV.

In view of this, the effective attractive interaction between electrons is operative only at
sufficiently low energies of electrons (counted from from Fermi energy),

|εk − εF | . ~ωD . (2.153)

Translated to time domain, the effective attractive interaction is retarded, with a characteristic
retardation time tD ∼ ω−1

D .

2.7.2 Cooper instability and Cooper pairs

Consider an exactly solvable model problem that consists of a Fermi see of free (non-interacting)
electrons and two electrons with attractive interaction. The role of the Fermi see is in blocking
of all states with energies ε < εF .

We thus look for a wave function in the form

|Φ〉 =
∑

|k 1|>kF , σ1, |k 2|>kF , σ2

φ(k 1,k 2, σ1, σ2) c†k 1,σ1
c†k 2,σ2

|Φ0〉 , (2.154)

where
|Φ0〉 =

∏
|k |≤kF , σ

c†k ,σ|0〉 (2.155)

is the filled Fermi see. Here k i are electron momenta and σi are spin projections (either ↑
of ↓, as we deal with electrons, i.e., spin-1

2
fermions). The total momentum K = k 1 + k 2

is a conserved quantity. The ground state is expected to be at K = 0, so that k 1 = −k 2.
Further, the interaction does not couple spin and orbital degrees of freedom, so that we look
for a function φ in the form

φ(k ,−k , σ1, σ2) = ψ(k )χ(σ1, σ2) . (2.156)

The following model interaction is considered:

gk ,−k ,k ′,−k ′ =

{
−g , 0 < ξk, ξk′ < ~ωD ,

0, sonst.
(2.157)

Here k , −k are initial electron momenta, while k ′ = k +q and −k ′ = −k −q are final-state
electron momenta. Further, ξk = εk−εF . Finally, g > 0 is a constant. This interaction models
the phonon-induced attraction within the shell of the width ~ωD near the Fermi energy. The
Hamiltonian thus reads

H = H0 +Hee ; Hee = − g

2V

∑
k ,k ′: 0<ξk, ξk′<~ωD; σ1,σ2

c†k ′,σ1 c
†
−k ′,σ2 c−k ,σ2 ck ,σ1 . (2.158)

Since the interaction is only operative in the shell 0 < ξk < ~ωD, the function ψ(k ) will be
non-zero only within this shell.

22



The Schrödinger equation H|Φ〉 = E|Φ〉 yields∑
k ,σ1,σ2

2εkψ(k )χ(σ1, σ2)c†k ,σ1c
†
−k ,σ2|Φ0〉 −

g

V

∑
k ,k ′,σ1,σ2

ψ(k )χ(σ1, σ2)c†k ′,σ1c
†
−k ′,σ2|Φ0〉

= E
∑

k ,σ1,σ2

ψ(k )χ(σ1, σ2)c†k ,σ1c
†
−k ,σ2|Φ0〉 , (2.159)

where the sums over k and k ′ go over the shell 0 < ξk, ξk′ < ~ωD, and the energy E is counted
from the energy of the filled Fermi sea. Equating the coefficients in front of c†k ,σ1c

†
−k ,σ2|Φ0〉,

we get

2εkψ(k )− g

V

∑
k ′: 0<ξk′<~ωD

ψ(k ′) = Eψ(k ) . (2.160)

We denote

C ≡ 1

V

∑
k : 0<ξk<~ωD

ψ(k ) . (2.161)

Equation (2.160) yields

ψ(k ) =
gC

2εk − E
. (2.162)

Summing this equation over k in the shell 0 < ξk < ~ωD and dividing by volume V , we get

C =
1

V

∑
k : 0<ξk<~ωD

gC

2εk − E
. (2.163)

We thus have obtained an equation for E:

1 =
g

V

∑
k : εF<εk<εF+~ωD

1

2εk − E
. (2.164)

The sum over momenta can be rewritten in the usual way as an integral over energy:

1 = g

εF+~ωD∫
εF

dε ν(ε)
1

2ε− E
, (2.165)

where ν(ε) is the density of states per spin projection. Approximating the density of states
by its value at the Fermi energy ν(ε) ' ν(εF ) ≡ ν0, we obtain

1

gν0

=
1

2
ln

2εF + 2~ωD − E
2εF − E

(2.166)

Thus
2εF + 2~ωD − E

2εF − E
= e

2
gν0 (2.167)

and, therefore,

δE ≡ E − 2εF = − 2~ωD
e

2
gν0 − 1

' −2~ωD e−
2
gν0 < 0 . (2.168)

On the last step, we assumed a weak interaction, gν0 � 1.
We have thus obtained a reduction of energy due to interaction (δE < 0), i.e., a bound

state of two electrons: a Cooper pair. The binding energy per electron is

∆ =
1

2
|δE| = ~ωD e−

2
gν0 . (2.169)

Comments:
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(i) We have assumed that the interaction gk ,−k ,k ′,−k ′ is independent of the directions k̂, k̂′

and obtained, as a result, that the Cooper-pair wave function ψ(k ) is independent on
k̂, i.e., s-wave pairing (angular momentum L = 0 of the Cooper pair). The total wave
function φ(k ,−k , σ1, σ2) = ψ(k )χ(σ1, σ2) should be antisymmetric (since electrons are
fermions): φ(k ,−k , σ1, σ2) = −φ(−k ,k , σ2, σ1). Since the orbital part is symmetric,
ψ(k ) = ψ(−k ), the spin part χ(σ1, σ2) should be antisymmetric, i.e. the Cooper pair is
in spin-singlet state, with total spin S = 0.

In a similar way, one can assume an attraction in a channel with orbital angular mo-
mentum L = 1, 2, . . . , ..:
L = 0 s-wave S = 0 spin-singlet
L = 1 p-wave S = 1 spin-triplet
L = 2 d-wave S = 0 spin-singlet
etc.

(ii) The binding energy ∆ depends on the interaction strength g in a non-analytic way. Thus,
this result cannot be obtained by means of a perturbative expansion in g.

(iii) Without the effect of the Fermi-see blocking, there is no bound states for a weak potential
in 3D.

2.8 Superconductivity: BCS theory

J. Bardeen, L. Cooper, and R. Schrieffer, 1957

Now we consider the full many-body problem.

2.8.1 BCS Hamiltonian

We work in the grand canonical ensemble. The grand canonical partition function:

ZG =
∑
n,N

e−β(En,N−µN) . (2.170)

At T = 0 one has to find the ground state of the grand canonical Hamiltonian HG = H −µN ,
which is given by

HG =
∑
k ,σ

ξk c
†
k ,σ ck ,σ −

1

2

g

V

∑
k 1,σ1,k 2,σ2,q

c†k 1+q ,σ1
c†k 2−q ,σ2 ck 2,σ2 ck 1,σ1 , (2.171)

where ξk = εk − µ. Here g > 0, implying attraction. To model the attraction induced
by phonons, the summation in the second term goes over such momenta that all involved
electrons are in the ~ωD shell around the Fermi energy:

|ξk 1|, |ξk 2|, |ξk 1+q |, |ξk 2−q | < ~ωD . (2.172)

Electrons outside of this shell are thus characterized by a free Hamiltonian and totally decouple,
so that we only consider the electrons within the shell (2.172) below.

We further notice that the attraction is much more efficient for electron pairs satisfying
k 1+k 2 ' 0 (Cooper pairs). Indeed, if K = k 1+k 2, the momentum of an electron k ′ = k 1+q
created by interaction term should satisfy |k ′| ' kF and |K −k ′| ' kF . For a generic (large)
K , the corresponding phase space (intersection of two shifted narrow shells) is very small. It
is strongly enhanced when K ' 0.
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We thus keep only terms with k 1 +k 2 = 0. Further, since we consider the s-wave pairing,
the Cooper pairs are spin singlets, i.e. σ1 = −σ2 in Eq. (2.171), see a comment in the end of
Sec. 2.7. We thus get a reduced Hamiltonian: BCS Hamiltonian

HBCS =
∑
k ,σ

ξk c
†
k ,σ ck ,σ −

g

V

∑
k ,k ′

c†k ′,↑ c
†
−k ′,↓ c−k ,↓ ck ,↑ , (2.173)

−~ωD < ξk, ξk′ < ~ωD .

2.8.2 Mean-field solution

We perform now the mean-field approximation for the interaction term; symbolically (omitting
indices):

c†c†cc 7→ 〈c†c†〉cc+ c†c†〈cc〉 − 〈c†c†〉〈cc〉 . (2.174)

Here we take into account only anomalous averages. This yields the effective (mean-field)
Hamiltonian

Heff =
∑
k ,σ

ξkc
†
k ,σ ck ,σ −∆∗

∑
k

c−k ,↓ ck ,↑ −∆
∑
k

c†k ,↑ c
†
−k ,↓ + V

|∆2|
g

, (2.175)

where
∆ =

g

V

∑
k ′

〈c−k ′,↓ ck ′,↑〉 , ∆∗ =
g

V

∑
k ′

〈c†k ′,↑ c
†
−k ′,↓〉. (2.176)

In general, ∆ can be complex but it is sufficient to take it real at this stage. The Hamilto-
nian Heff is similar to the bosonic Hamiltonian in (2.86). Specifically, Heff contains anomalous
terms of the type c†c† and cc. Further it represents a sum of decoupled terms, each of which
involves operators corresponding only to k , σ and −k ,−σ. The essential difference compared
to (2.86) is that we now deal with fermions. We thus need a fermionic version of Bo-
goliubov transformation. To understand it, we consider first, in analogy with Sec. 2.4.2, a
Hamiltonian (which is the fermionic counterpart of Eq. (2.87))

Ĥ = ε0(c†1c1 + c†2c2)− λ(c†1c
†
2 + c2c1) , (2.177)

with real ε0 and λ. Without restricting generality, we assume λ > 0. (One can always
change the sign of λ by renaming c1 ↔ c2.) The operators cj satisfy canonical fermionic

anticommutation relations {ci, c†j} = δij and {c1, c2} = {c†1, c
†
2} = 0. (We will later apply it to

Eq. (2.175) with c1 → ck ,↑ and c2 → c−k ,↓.) The idea is to diagonalize the Hamiltonian. For
this purpose, we introduce new operators

b1 = uc1 − vc†2 , b2 = uc2 + vc†1 , (2.178)

with coefficients u and v that remain to be specified. In general, u and v can be complex but
we take them real as it will be sufficient for our purposes. We require that the operators bi
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satisfy fermionic canonical anticommutation relations. Calculating the anticommutators, we
get

{b1, b
†
1} = {b2, b

†
2} = u2 + v2 , {b1, b2} = {b1, b

†
2} = 0 . (2.179)

Note that opposite signs in Eqs. (2.178) are crucial for getting {b1, b2} = 0. The anticommu-
tation relations have the canonical form if u and v satisfy

u2 + v2 = 1 . (2.180)

The inverse transformation then reads

c1 = ub1 + vb†2 , c2 = ub2 − vb†1 . (2.181)

Substituting this in Eq. (2.177), we find

Ĥ = 2v2ε0−2uvλ+[ε0(u2−v2)+2uvλ](b†1b1 +b†2b2)− [λ(u2−v2)−2uvε0](b†1b
†
2 +b2b1) . (2.182)

We require now that the term proportional to b†1b
†
2 + b2b1 vanishes, i.e.,

λ(u2 − v2)− 2uvε0 = 0 . (2.183)

In view of Eq. (2.180), we can parametrize u and v via

u = cos θ , v = sin θ . (2.184)

Equation (2.183) then becomes

tan 2θ =
λ

ε0
. (2.185)

We take its solution 2θ ∈ [0, π], so that θ ∈ [0, π/2] and thus u, v > 0. It follows that

cos 2θ = (1 + tan2 2θ)−1/2 =

[
1

1 + (λ/ε0)2

]1/2

=
ε0
ε
, (2.186)

where we have defined

ε =
√
ε20 + λ2 > 0 . (2.187)

From Eqs. (2.184) and (2.186) we obtain

u2 =
1

2
(1 + cos 2θ) =

1

2

(
1 +

ε0
ε

)
, v2 =

1

2
(1− cos 2θ) =

1

2

(
1− ε0

ε

)
, (2.188)

and thus

u2 − v2 =
ε0
ε
, 2uv =

λ

ε
. (2.189)

Substituting this in (2.182), we obtain the final result for the Hamiltonian after the Bogoliubov
transformation:

Ĥ = ε0 − ε+ ε(b†1b1 + b†2b2) , (2.190)

with ε given by Eq. (2.187). This fully solves the problem, since the Hamiltonian has now a
standard form with two “flavors” of non-interacting fermions. The ground state energy is ε0−ε,
and the ground state is determined by the conditions bi|0〉 = 0 for i = 1, 2. The excited states
are obtained by acting on the ground state with operators b†1 and b†2; they are characterized
by the numbers n1 and n2 of the two kinds of fermions. Since we deal with fermions, ni take
values 0 or 1. Each excitation adds energy ε.
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Now we apply these results to the Hamiltonian Heff , Eq. (2.175) (with real ∆) by sub-
stituting c1 → ck ,↑ and c2 → c−k ,−↓. The correspondence between parameters is ε0 7→ ξk
and λ 7→ ∆. We use σ = +1 equivalently to σ =↑, and σ = −1 equivalently to σ =↓. The
transformation (2.178) then becomes

bk ,σ = uk ck ,σ − σvk c†−k ,−σ , b†k ,σ = uk c
†
k ,σ − σvk c−k ,−σ , (2.191)

which is the fermionic counterpart of the bosonic Bogoliubov transformation (2.101). Here
u−k = uk and v−k = vk are real (and positive); in fact, uk and vk depend only on k = |k |.

The formulas below essentially repeat the derivation that we have performed for Eq. (2.177),
and the final result (2.201) for the Hamiltonian (after diagonalization) is Eq. (2.190), with
summation over momenta.

Requiring the fermionic (anticommutation) relations{
bk ,σ, b

†
k ′,σ′

}
= δk ,k ′δσ,σ′ , (2.192)

we get a condition on the coefficients:

u2
k + v2

k = 1 . (2.193)

A second condition on the coefficients uk and vk comes from the requirement that the Hamil-
tonian in terms of new operators has the form

H =
∑
k ,σ

Ek b
†
k ,σ bk ,σ + const , (2.194)

i.e. terms of the type b†b† and bb cancel.
The relations inverse to Eq. (2.191) read:

ck ,σ = uk bk ,σ + σvk b
†
−k ,−σ , c†k ,σ = uk b

†
k ,σ + σvk b−k ,−σ . (2.195)

Substituting them in Eq. (2.175), we get

Heff =
∑
k σ

ξk[uk b
†
k ,σ + σvk b−k ,−σ][uk bk ,σ + σvk b

†
−k ,−σ]

−

{
∆
∑
k

[uk b−k ,↓ − vk b†k ,↑][uk bk ,↑ + vk b
†
−k ,↓] + h.c.

}
+ const. (2.196)

Inspecting the coefficient of the term b−k ,↓bk ,↑ and requiring that it is equal to zero, we get
the condition

2ξkvk uk −∆(u2
k − v2

k ) = 0 . (2.197)

Solving it together with Eq. (2.193), we get

uk =

√
1

2

(
1 +

ξk
Ek

)
, vk =

√
1

2

(
1− ξk

Ek

)
, (2.198)

where

Ek =
√
ξ2
k + ∆2 . (2.199)
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Collecting now the coefficient in front of b†k σbk σ in Eq. (2.196), we find

ξk(u
2
k − v2

k) + ∆ · 2ukvk = ξk
ξk
Ek

+ ∆
∆

Ek
=
ξ2
k + ∆2

Ek
= Ek . (2.200)

Thus, the Hamiltonian has the form

H =
∑
k ,σ

Ekb
†
k ,σ bk ,σ + const , (2.201)

with Ek given by Eq. (2.199). This is exactly Eq. (2.190), with summation over momenta
and with ε 7→ Ek. The excitations are Bogoliubov quasiparticles (for which b†k ,σ, bk ,σ
are creation and annihilation operators), with the spectrum Ek. The key property of this
spectrum is the energy gap ∆ (to be determined below). The “const” in Eq. (2.201) is the
ground-state energy; we will also determine it below.

The ground state |ΦBCS〉 is determined by the condition

bk ,σ|ΦBCS〉 = 0 (2.202)

for all k , σ. It is given by

|ΦBCS〉 =
∏
k

(uk + vkc
†
k ,↑c

†
−k ,↓)|0〉. (2.203)

Using bk ,σ = uk ck ,σ − σvk c
†
−k ,−σ [Eq. (2.191)], it is easy to see that Eq. (2.202) is indeed

satisfied.

Self-consistency equation

To determine the gap ∆, we derive the self-consistency equation:

∆ =
g

V

∑
k

〈c−k ,↓ ck ,↑〉 =
g

V
〈[ukb−k ,↓ − vkb†k ,↑][ukbk ,↑ + vk b

†
−k ,↓]〉

T=0
=

g

V

∑
k

ukvk 〈b−k ,↓b†−k ,↓〉︸ ︷︷ ︸
=1

=
g

V

∑
k

ukvk . (2.204)

Substituting here expressions for uk and vk, Eq. (2.198), we obtain

∆ =
g

2V

∑
k

∆√
ξ2
k + ∆2

. (2.205)

After a replacement of the summation by an integral, the equation takes the form

1 =
gν0

2

~ωD∫
−~ωD

dξ
1√

∆2 + ξ2
= gν0

∫ ~ωD

0

dξ
1√

∆2 + ξ2
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= gν0

~ωD/∆∫
0

dx
1√

1 + x2
= gν0 ln(

√
1 + x2 + x)

∣∣∣~ωD/∆
0

' gν0 ln
2~ωD

∆
(2.206)

On the last step, we have assumed ∆� ~ωD, which is the case for weak interaction, gν0 � 1.
Thus, we find the gap at T = 0:

∆ = 2~ωD e−
1
ν0g . (T = 0) (2.207)

2.8.3 Ground state energy

Let us show that the energy of the BCS ground state |ΦBCS〉 is lower than the energy of the
normal state |Φ0〉 (filled Fermi sea, which can be obtained from the BCS state by setting
∆ = 0). The energy of the BCS state is (subscript “s” for “superconductor”)

Es = 〈ΦBCS|Heff |ΦBCS〉 = V
∆2

g
+
∑
k

(ξk − Ek) , (2.208)

where the first term is the constant term from Eq. (2.175) and the second term is a sum of
constant terms in Eq. (2.190), with substitution ε0 − ε 7→ ξk − Ek. The energy of the normal
state |Φ0〉 is (subscript “n” for “normal”)

En = 〈Φ0|Heff |Φ0〉 = 2
∑
|k |<kF

ξk . (2.209)

The difference is

Es − En = V
∆2

g
+
∑
|k |>kF

(ξk − Ek) +
∑
|k |<kF

(−ξk − Ek) = V
∆2

g
+ 2

∑
|k |>kF

(ξk − Ek) , (2.210)

where, in the last step, we used the symmetry around the Fermi energy (ξk is odd, and Ek is
even). Replacing summation by an integral, we obtain

Es − En = V
∆2

g
+ 2V ν0

∫ ~ωD

0

dξ (ξ −
√
ξ2 + ∆2)

= V
∆2

g
+ 2V ν0∆2

∫ ~ωD/∆

0

dx (x−
√
x2 + 1)

= V
∆2

g
− V ν0∆2

(
1

2
+ ln

2~ωD
∆

)
= V

∆2

g
− V ν0∆2

(
1

2
+

1

ν0g

)
(2.211)

On the last step we used Eq. (2.207) for the gap ∆. We thus see that the term V∆2/g cancels,
and the final result for the difference between the energy of the BCS state and the normal
state (per unit volume) is

Es − En
V

= −1

2
ν0 ∆2 < 0 . (2.212)

Importantly, Es − En < 0. i.e., BCS state has lower energy than the Fermi see. This is
another confirmation of the fact that the BCS state is the ground state of the Hamiltonian.
Equation (2.212) is the condensation energy. Its magnitude can be understood in a simple
way: electrons within the energy window ∼ ∆ gain an energy ∼ ∆ due to pairing.

29



2.8.4 Superconductivity: Landau criterion

We recall the Landau criterion for superfluidity (2.118)

v < min
p

(
ε(p)

p

)
≡ vc , (2.213)

Here vc is the critical velocity. For v < vc, no excitations will be created, implying superfluidity.
Only for v > vc excitations with ∆E ′ < 0 appear, and dissipation (i.e., friction) emerges. Thus,
as long as vc > 0, the system is superfluid for sufficiently small flow velocities, v < vc.

In a Fermi liquid, excitations are particle-hole pairs. Their momentum is
p ∈ [0, 2pF ], and the energy can be arbitrarily small. Therefore, vc = 0, i.e.,
there is a finite friction (resistance) for any velocity of the flow (i.e., for any
current).

On the other hand, in the presence of weak attractive interaction, the ground state and the
spectrum of excitations around it are given by the BCS theory. Crucially, there is a gap 2∆
for creation of quasiparticle pairs. Therefore,

vc =
2∆

2pF
=

∆

pF
> 0 , (2.214)

so that there is no friction, i.e., no resistance, for v < vc. The system is thus a superfluid.
In the case of charged fermions—most importantly, electrons—it is a superconductor. The
critical velocity vc implies the critical current density

jc = nevc = ne
∆

pF
, (2.215)

where n is the electron density and e the electron charge. For j < jc the current flows without
resistance, i.e., the system is superconducting.

2.8.5 Extension to finite temperature

The BCS theory can be extended to a finite temperature T . The difference will be in the
self-consistency equation, since the average in Eq. (2.204) should be then taken not over the
ground state but over the thermal state. We omit here details of the calculation and only
present the results.

The self-consistency equation at finite T takes the form

∆ =
g

2V

∑
k

∆

Ek
tanh

βEk
2

, Ek =
√

∆2 + ξ2
k . (2.216)

A non-trivial solution ∆(T ) of this equation is found for temperatures T < Tc, with the critical
temperature Tc given by

kBTc =
2eγ

π
~ωD e−

1
ν0g ' 1.14 ~ωD e−

1
ν0g , (2.217)

where γ ' 0.5772 is the Euler constant. Comparing this with Eq. (2.207) for the gap at T = 0,
we get a universal ratio

∆(T = 0)

kBTc
=

π

eγ
' 1.76 . (2.218)

With increasing T , the gap ∆(T ) monotonically decreases:
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The behavior for temperatures T < Tc close to Tc is

∆(T ) '
(

8π2

7ζ(3)

)1/2

kB Tc

√
1− T

Tc
' 3.06 kBTc

√
1− T

Tc
. (2.219)

We see the scaling ∆(T ) ∝ (Tc − T )1/2 with the familiar mean-field value of the exponent
β = 1/2.

2.8.6 Density of states of Bogoliubov quasiparticles

Consider first quasiparticles with momenta k satisfying ξk > 0. The number of quasiparticles
in the volume d3k is the same in the normal state and the superconducting state. Thus, we
can write for the number of quasiparticles in the interval dξ:

νs(E)dE = νn(ξ)︸ ︷︷ ︸
' 2ν0

dξ , E =
√
ξ2 + ∆2 , (2.220)

where the subscripts “s” and “n” refer to superconductor and normal state, respectively, and
factor 2 in 2ν0 is due to spin. Thus, we have for quasiparticles with ξ > 0:

νs(E) = 2ν0
dξ

dE
= 2ν0 ×

{
E√

E2−∆2 , E > ∆ ;

0 , E < ∆ .
(2.221)

Quasiparticles with ξk < 0 yield the same contribution, so that the total νs(E) is twice that
given by Eq. (2.221), see left figure below. Note that here E is the excitation energy above
the ground state that is by definition positive.

To make a closer contact with the picture of a normal metal, in which we have a constant
density of states 2ν0, with states with negative energy (counted from µ) filled and states with
positive energy empty, one frequently represents the density of states in a “symmetrized” form,
with νs(−E) = νs(E) given by Eq. (2.221) with E 7→ |E|, see the right figure below. Such
density of states can be directly measured by measuring the differential conductance dI/dV
in a tunneling experiment (from a normal metal to a superconductor), with bias voltage V
translating into the energy E. Such a representation visualizes in a particularly clear way the
gap 2∆ for excitation of a quasiparticle pair.
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2.9 Electrodynamics of superconductors: London equa-

tions and Meissner effect

We first present a phenomenological theory as developed by F. London and H. London in 1935.
Later we discuss its derivation from the microscopic (BCS) theory.

Consider first electrons (with charge −e) that move without friction (resistance) in an
electric field. (For a normal system, this would be the case if the electrons would not interact
with lattice and impurities.)

mv̇ = −eE . (2.222)

Since the current is given by j = −nev , where n is the electron density, we obtain then

∂j

∂t
=
ne2

m
E . (2.223)

In terms of the scalar and vector potentials, the electric field is E = −1
c
Ȧ −∇φ. We choose

the gauge φ = 0 and ∇ ·A = 0 (Coulomb gauge or, in the superconductivity context, London
gauge). Then, if we allow ourselves to remove time derivatives, Eq. (2.223) takes the form

j = −ne
2

mc
A . (2.224)

Taking the curl of this equation, we get

∇ × j = −ne
2

mc
B . (2.225)

The London ansatz postulates that these equations hold for a superconducting system, with
a replacement n 7→ ns, where ns is the “density of superconducting electrons”,

j = −nse
2

mc
A . (2.226)

An important assumption here is that Eq. (2.226) holds also for static fields. For T = 0, when
the system is in the ground state, all electrons are superconducting, so that ns = n. At finite
temperature, 0 < T < Tc, one has

0 < ns(T ) < n , ns(T ) + nn(T ) = n , (2.227)
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where nn(T ) is the density of the normal component of the electron system. Equation (2.226)
yields, in analogy with Eqs. (2.223) and (2.225),

∂j

∂t
=
nse

2

m
E , (2.228)

∇ × j = −nse
2

mc
B . (2.229)

Comment: Note that Eq. (2.226) can be equivalently written in terms of Cooper pairs. Indeed,
it is invariant under the substitution ns 7→ ns/2, m 7→ 2m, and e 7→ 2e.

2.9.1 Static fields

Assume a static (time-independent) situation. The inhomogeneous Maxwell equation for B
then reads

∇ ×B =
4π

c
j . (2.230)

Note that we consider induced currents explicitly and thus use the microscopic Maxwell equa-
tion. Taking the curl of this equation, we obtain

∇ × (∇ ×B ) =
4π

c
∇ × j

(2.229)
= −4πnse

2

mc2
B . (2.231)

The l.h.s. can be transformed via the identity

∇ × (∇ ×B ) = ∇ (∇ ·B︸ ︷︷ ︸
=0

)−∇ 2B = −∇ 2B . (2.232)

Thus, Eq. (2.231) yields

∇ 2B =
4πnse

2

mc2
B . (2.233)

Consider a boundary between the vacuum and a superconductor, with axis x transverse to the
boundary, so that x < 0 corresponds to the vacuum and x > 0 to the superconductor. The
magnetic field will locally depend on x only, so that Eq. (2.233) takes the form

∂2B

∂x2
=

4πnse
2

mc2
B (x > 0). (2.234)

The solution reads
B (x) = B 0 e

−x/λL , (2.235)

where B 0 is the field at the boundary and

λL =

√
mc2

4πnse2
(2.236)

is the London penetration depth. The result (2.235) is a manifestation of the Meißner
effect (also called Meißner-Ochsenfeld effect): the magnetic field is expelled from the
superconductor and is sizeable only in a narrow layer (of depth ∼ λL) at the surface. The
Meißner effect is, along with the vanishing of the resistance, one of main hallmarks of super-
conductivity.

Comment: The Meißner effect in a superconductor is a paradigmatic example of the Higgs
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mechanism (also called Anderson-Higgs mechanism) for generation of mass of gauge
bosons coupled to a field that exhibits a spontaneous symmetry breaking. Its counterpart in
the particle physic is generation of mass of W and Z bosons due to coupling to the Higgs field.
We will return to it below in Sec. 2.11.6.

In the same way as Eq. (2.233) is derived above, we get from Eqs. (2.229) and (2.230):

∇ 2j =
4πnse

2

mc2
j . (2.237)

It follows from this equation that currents in the superconducting state also flow in the narrow
layer of depth λ. In particular, these currents create magnetization that screens the external
magnetic field.

2.9.2 Critical magnetic field

The Meißner effect (and more generally, the superconductivity) holds as
long as the external magnetic field H is not too strong and the system
gains energy by expelling the magnetic field. There is a critical field Hc

such that for H > Hc this is not the case any more and, as a result, the
magnetic field penetrates the system and the superconductivity is destroyed.
Let us find Hc.

The total magnetic field B = 0 inside the superconductor is a sum of the external field
and the field induced by the magnetisation current:

B = B ext︸ ︷︷ ︸
= H

+ B ind︸ ︷︷ ︸
= 4πM

= 0 =⇒ B ind = −H . (2.238)

The total free-energy density of a superconductor consists of the zero-field free energy Fs and
the energy of the induced currents screening the external magnetic field. The latter is given
by B2

ind/(8π). Therefore, the superconducting state “wins” as long as

Fs +
B2

ind

8π
< Fn ⇐⇒ Fs +

H2

8π
< Fn , (2.239)

where Fn is the normal-state free-energy density. At the critical field Hc, Eq. (2.239) becomes
an equality, i.e.,

H2
c = 8π(Fn − Fs) . (2.240)

At zero temperature, T = 0, Fs and Fn are the ground state energies Es and En (per unit
volume) that were calculated in Sec. 2.8.3.

Equivalent derivation: Thermodynamics in a magnetic field

H — external field, B = H + 4πM – total field. Free energy:

F (T, V,B ) ; dF = −SdT − PdV︸ ︷︷ ︸
dF0

+

∫
d3r

1

4π
H dB , (2.241)
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where F0 is the free energy in the absence of the field. Since it is not B but rather the external
field H that is fixed, one should perform Legendre transformation:

F (T, V,B ) −→ FH(T, V,H ) = F −
∫
d3r

HB

4π
. (2.242)

This is similar to a Legendre transformation V 7→ P , and in this sense FH is analogous to free
enthalpy (or, equivalently, Gibbs free energy). The differential of FH reads (per unit volume)

dFH = dF0 −
1

4π
B dH , (2.243)

where F0 and FH are now defined per unit volume (i.e., they are densities of the corresponding
thermodynamic potentials). Note that

− 1

4π
B dH = − 1

4π
H dH −M dH ,

where the first term depends only on the external field H and thus does not influence the
comparison of FH in the normal and superconducting states. For this reason, it is frequently
omitted in the expression for dFH . We use below dFH as given by Eq. (2.243). If B = µH ,
where µ is magnetic permeability, we have

FH = F0 −
µH2

8π
. (2.244)

The point H = Hc of the phase transition between normal (n) and superconducting (s) states
is determined by the condition

FH,n = FH,s . (2.245)

In the normal state we have µ = 1 (i.e., M = 0), so that

FH,n = F0,n −
H2

8π
. (2.246)

In the superconducting state B = 0, i.e., µ = 0, so that

FH,s = F0,s . (2.247)

Thus, the condition for the critical field Hc reads

F0,n −
H2
c

8π
= F0,s =⇒ H2

c

8π
= F0,n − F0,s , (2.248)

in agreement with Eq. (2.240).

2.9.3 Critical field in the BCS theory

We calculate Hc according to Eq. (2.240), H2
c = 8π(Fn − Fs), in the BCS theory at zero

temperature, T = 0. In this case the free energy F reduces to the energy E, so that Fn = En
and Fs = Es. Substituting the result (2.212) for En−Es into the formula H2

c = 8π(En−Es),
where energies are defined per unit volume, we find the zero-temperature critical field

Hc(T = 0) = 2
√
πν0 ∆(T = 0) . (2.249)
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For T → Tc − 0 one obtains (we do not
provide a derivation here)

Hc(T ) ' 1.735Hc(0)

(
1− T

Tc

)
. (2.250)

2.9.4 Derivation of London equations from the BCS theory

We consider, within the BCS theory, coupling of the superconductor to an external electro-
magnetic field described by a vector potential A . Since the dominant effect comes from the
coupling to the orbital motion, we neglect the spin coupling. The kinetic-energy part of the
Hamiltonian reads, in the second-quantized form,

Hkin =
∑
σ

∫
d3r Ψ̂†σ(r )

(
−i~∇ + e

c
A
)2

2m
Ψ̂σ(r ) . (2.251)

One can now calculate the current within the BCS theory by considering the vector potential
as a perturbation (i.e., to the linear order in A ). We omit the derivation and directly present
the result. It has exactly the form of the London equation (2.226),

j = −nse
2

mc
A , (2.252)

with the superconducting density ns given by

ns = n

[
1−

∫ ∞
−∞

dξ

(
− ∂f
∂E

)]
, f(E) =

1

eβE + 1
, E =

√
∆2 + ξ2 . (2.253)

The temperature dependence ns(T ) that is determined by Eq. (2.253) looks as follows:

T > Tc

In this case ∆ = 0 and E = ξ. Thus,∫
dξ

(
− ∂f
∂E

)
=

∫
dξ

(
−∂f
∂ξ

)
= 1 , (2.254)

so that
ns = 0 (2.255)
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as expected. The system is in normal state, there is no superconductivity.

T < Tc

E =
√
ξ2 + ∆2 ≥ ∆ , ξ =

√
E2 −∆2.

We thus have
ns
n

= 1− 2

∫ ∞
∆

dE

(
− ∂f
∂E

)
E√

E2 −∆2
. (2.256)

This formula can be used to obtain the dependence ns(T ) at T < Tc.

T = 0

− ∂f
∂E

= δ(E) =⇒
∫ ∞

∆

dE

(
− ∂f
∂E

)
. . . = 0 , (2.257)

so that
ns = n . (2.258)

The “density of superconducting electrons” is equal to the total density.

T� Tc ∫ ∞
∆

dE

(
− ∂f
∂E

)
. . . ∝ e−∆/T , (2.259)

and thus
1− ns

n
∝ e−∆/T . (2.260)

T→ Tc − 0
For temperatures in the superconducting phase (T < Tc) close to Tc, one finds from

Eq. (2.256)
ns
n
' 2

(
1− T

Tc

)
. (2.261)

London penetration depth

Using ns(T ) obtained from the BCS theory, one immediately finds the temperature dependence
of the London penetration depth given by Eq. (2.236)

λL(T ) =

√
mc2

4πns(T )e2
. (2.262)

For T = 0, we find, using Eq. (2.258),

λL(0) =

√
mc2

4πne2
. (2.263)

Near Tc, the penetration depth diverges,
according to Eq. (2.261), as follows:

λL(T ) ' λL(0)√
2

(
1− T

Tc

)−1/2

. (2.264)
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2.10 Order parameter, phase of the condensate, and

flux quantization

2.10.1 Superconducting condensate as order parameter, role of the
phase

The superconducting state is distinguished from the normal state by a non-zero value of the
superconducting condensate

∆ =
g

V

∑
k

〈c−k ,↓ck ,↑ 〉 = g〈Ψ̂↓(r )Ψ̂↑(r )〉 . (2.265)

It plays thus the role of the order parameter for the transition from the normal state to the
superconducting state.

Up to now, we considered the BCS ground state |BCS〉 corresponding to real ∆. However, it
is easy to construct an equivalent state with the same |∆| and with arbitrary phase, ∆ = |∆|eiφ.
To see this, we return to the BCS Hamitlonian and notice that it is invariant under the
transformation

c†k ,σ 7→ c̃†k ,σ = eiφ/2c†k ,σ , ck ,σ 7→ c̃k ,σ = e−iφ/2ck ,σ (2.266)

with arbitrary constant phase φ ∈ R:

HBCS =
∑
k ,σ

ξk c
†
k ,σ ck ,σ −

g

V

∑
k ,k ′

c†k ′,↑ c
†
−k ′,↓ c−k ,↓ ck ,↑

=
∑
k ,σ

ξk c̃
†
k ,σ c̃k ,σ −

g

V

∑
k ,k ′

c̃†k ′,↑ c̃
†
−k ′,↓ c̃−k ,↓ c̃k ,↑ . (2.267)

We consider now the BCS ground state with ∆ ∈ R in terms of the operators c̃†k ,σ, c̃k ,σ:

g

V

∑
k

〈c̃−k ,↓c̃k ,↑ 〉 = ∆ . (2.268)

Returning to the original operators c†k ,σ, ck ,σ, we find then

g

V

∑
k

〈c−k ,↓ck ,↑ 〉 = ∆ eiφ . (2.269)

The corresponding ground state is obtained from

|BCS〉 =
∏
k

(uk + vkc̃
†
k ,↑c̃

†
−k ,↓)|0〉 (2.270)

by the transformation (2.266), which yields

|BCS(φ)〉 =
∏
k

(uk + eiφvkc
†
k ,↑c

†
−k ,↓)|0〉 . (2.271)

The general form of the self-consistency equation (2.216) (allowing for a complex ∆) is

∆ =
g

2V

∑
k

∆

Ek
tanh

βEk
2

, Ek =
√
|∆|2 + ξ2

k . (2.272)
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We have thus a family of degenerate ground states |BCS(φ)〉. The Hamiltonian is invariant
under the transformation (2.266), see Eq. (2.267), but each ground state is not invariant. This
is a situation of spontaneous symmetry breaking.

Any linear combination of ground states yields also a ground state. In particular, it is easy
to construct a ground state wit a fixed number N of electrons (exercise: check this):

|BCS(N)〉 =

2π∫
0

dφ

2π
|BCS(φ)〉e−iNφ/2 . (2.273)

Equation (2.273) is a manifestation of the fact that the phase φ/2 and number N are canoni-
cally conjugate variables (like coordinate and momentum).

Consider a quantum-mechanical gauge transformation (charge −e):

A 7→ A + ∇χ ≡ A ′ , χ = χ(r ) , (2.274)

Ψ 7→ Ψ exp

{
− ie
~c

χ

}
≡ Ψ′ . (2.275)

According to Eq. (2.274), A ′ −∇χ is the invariant of the gauge transformation.
We compare now Eq. (2.275) with the transformation of the condensate ∆ 7→ ∆ eiφ and

identify
φ

2
= − e

~c
χ . (2.276)

In the London equation for the gauge-invariant quantity (current), the gauge invariant combi-
nation should enter, i.e., in the case of a spatially varying phase of the condensate we should
generalize the equation by replacing:

A 7→ A +
~c
2e

∇φ . (2.277)

This yields the London equation for the supercurrent j s:

j s = −e
2ns
mc

(
A +

~c
2e

∇φ

)
. (2.278)

The term proportional to the gradient of the phase is analogous to Eq. (2.151) for the superfluid
velocity of a Bose gas.

2.10.2 Flux quantization

Consider a superconducting ring (cylinder) with a thickness
d� λL.

Consider a closed path C deeply inside the ring. In the
bulk of the superconductor j s = 0. On the other hand,
integrating j s over the path, we get

∮
C

dl · j s︸︷︷︸
=0︸ ︷︷ ︸

=0

= −e
2ns
mc


∮
C

dl ·A︸ ︷︷ ︸
magnetic flux Φ

+
~c
2e

∮
C

dl ·∇φ︸ ︷︷ ︸
2πn , n∈Z

 . (2.279)
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Thus, we get the flux quantization

Φ =
2π~ c n

2e
= nΦ

(s)
0 , n ∈ Z, (2.280)

where

Φ
(s)
0 =

hc

2e
(2.281)

is the superconducting flux quantum (differs from the conventional flux quantum Φ0 by
a substitution e 7→ 2e).

2.11 Ginzburg-Landau Theory

This is a phenomenological theory that was developed in 1950 (i.e., before the development of
the microscopic BCS theory). Connection with the BCS theory will be discussed below.

One introduces a complex order parameter ψ(r ) which is in general dependent on the
spatial coordinate r (if there is an external magnetic field or spatial inhomogeneity of the
problem):

ψ(r ) =

√
ns
2
eiφ(r ) , (2.282)

On can view it as a wave function of the superconducting condensate. Here ns is the density
of superconducting electrons, and thus ns/2 is the density of Cooper pairs.

Define a dimensionless parameter characterizing a distance from the transition point Tc:

τ =
T − Tc
Tc

. (2.283)

The theory is developed in the vicinity of Tc, i.e., for |τ | � 1. The functional of the free-energy
density can be then expanded in powers of ψ and of gradients. It is postulated to have the
following form:

FH [ψ, ψ∗,A ](T,H) = F
(n)
H (T, 0) + a|ψ|2 +

b

2
|ψ|4 +

1

4m

∣∣∣∣(−i~∇ +
2e

c
A

)
ψ

∣∣∣∣2 +
B 2

8π
− H ·B

4π
.

(2.284)
The total free energy is

∫
d3rFH . Here it was taken into account that the Cooper pair has

a mass 2m and charge −2e. The field H is the given external field. The vector potential
A is related to the magnetic field B in the usual way, ∇ × A = B . The free energy
should be varied (minimized) with respect to ψ and A . The result yields FH , i.e., the Gibbs
free energy (free enthalpy) with respect to magnetic field, cf. Sec. 2.9.2 for discussion of the
thermodynamics in magnetic field.

Parameters a and b satisfy:

a = ατ, α > 0 , b > 0 , (2.285)

where α and b are constants.

2.11.1 No magnetic field, spatially uniform order parameter

One has then the Landau free energy

F (T ) = F (n)(T ) + a|ψ|2 +
b

2
|ψ|4 . (2.286)
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To find the thermodynamically stable state, we minimize with respect to ψ:

∂F

∂ψ∗
= ψ (a+ b|ψ|2) = 0 . (2.287)

For τ > 0 (i.e., T > Tc) we have a > 0 and thus the trivial solution ψ = 0. On the other hand,
for τ < 0 (i.e., T < Tc) we have a < 0 and thus a non-trivial solution:

|ψ|2 =
−a
b

=
−ατ
b

=
α

b

Tc − T
Tc

. (2.288)

More precisely, there is a family of solutions for ψ (with different phases). This is a sponta-
neous symmetry breaking. The oder parameter ψ is proportional to ∆ of the BCS theory;
exact relation will be derived below.

2.11.2 Inhomogeneous situation

Now we consider the generic (inhomogeneous) situation, in the presence of magnetic field and
current.

We have to minimize the free energy (2.284) with respect to ψ and A . Varying with
respect to ψ∗ gives

δFH
δψ∗

= 0 =⇒ 1

4m

(
−i~∇ +

2e

c
A

)2

ψ + aψ + b|ψ|2ψ = 0 . (2.289)

Varying (2.284) with respect to A gives the Maxwell equation

δFH
δA

= 0 =⇒ ∇×B −∇×H =
4π

c
j , (2.290)

where j is the current (cf. Sec. 2.9.4)

j =
ie~
2m

(ψ∗∇ψ − (∇ψ∗)ψ)− 2e2

mc
|ψ|2A . (2.291)

Using

∇×H =
4π

c
j ext = 0 , (2.292)

we reduce Eq. (2.290) to the form

∇×B =
4π

c
j . (2.293)

Substituting ψ = |ψ|eiφ into Eq. (2.291), we obtain the London equation

j s = −e
2ns
mc

(
A +

~c
2e

∇φ

)
, (2.294)
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with
ns = 2|ψ|2 . (2.295)

Thus, we find the London penetration depth

λL =

√
mc2

4πnse2
=

√
mc2

8π|ψ|2e2
, (2.296)

where |ψ|2 is given by Eq. (2.288).
It is also not difficult to calculate the critical field Hc within the Ginzburg-Landau formal-

ism (exercise).

2.11.3 Comparison between the Ginzburg-Landau and the BCS
theory

We compare the Ginzburg-Landau theory to the microscopic BCS theory in the vicinity of the
transition:

τ ≡ T − Tc
Tc

< 0 , |τ | � 1 . (2.297)

In the Ginzburg-Landau theory we have for the superconducting density ns [Eqs. (2.295),
(2.288)]:

ns = 2|ψ|2 =
−2a

b
=
−2ατ

b
. (2.298)

On the other hand, in the BCS theory we have for ns [Eq. (2.261)]

ns = −2neτ , (2.299)

where ne is the total electron density. We thus see that the Ginzburg-Landau theory yields
correct dependence ns ∝ |τ |. Similarly, one can verify that the scaling of Hc near the transition
that follows from the Ginzburg-Landau theory is also in agreement with the BCS theory
(exercise).

Comparing the results, one can express both phenomenological coefficients α and b of the
Ginzburg-Landau theory in terms of microscopic parameters:

α =
12π2

7ζ(3)
m

(
kBTc
pF

)2

; b =
α

ne
. (2.300)

2.11.4 Coherence length

Consider the case of A = 0 and spatially varying order parameter ψ(r ). Equation (2.289)
takes the form

− ~2

4m
∇ 2ψ + aψ + b|ψ|2ψ = 0 . (2.301)

We consider a boundary of a metal (at x < 0) and superconductor (at x > 0), with x axis
transverse to the boundary. We look for a solution ψ(r ) = ψ(x), with ψ ∈ R. Thus, the
equation has the form

− ~2

4m

d2ψ

dx2
+ aψ + bψ3 = 0 . (2.302)
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Since in the normal state (in a metal) ψ = 0, we set ψ(x = 0) = 0. (We slightly oversimplify
with the boundary condition but it is sufficient for our purposes.) The solution of Eq. (2.301)
with this boundary condition reads

ψ(x) =

√
−a
b

tanh
x√
2ξ
, (2.303)

where ξ is the coherence length given by

ξ =
~√
−4ma

=
~√

4mα|τ |
. (2.304)

The coherence length determines the characteristic scale at which the order parameter
varies. An equivalent way to see the significance of ξ is to linearize Eq. (2.302) with respect
to small deviations near the homogeneous solution ψ =

√
−a/b. One then finds that a small

perturbation of ψ at x = x0 decays as e−
√

2|x−x0|/ξ.

2.11.5 Relation of the Ginzburg-Landau order parameter and co-
herence length to the BCS gap ∆

In the BCS theory we had the gap

∆ = g〈Ψ↓(r )Ψ↑(r )〉 , (2.305)

with the result (2.219) close to Tc:

∆(T ) =

(
8π2

7ζ(3)

)1/2

kB Tc

√
1− T

Tc
, (2.306)

i.e.,

|∆|2 =
8π2

7ζ(3)
k2

B T
2
c |τ | (τ < 0). (2.307)

Comparing this with the result (2.288) of the Ginzburg-Landau theory,

|ψ|2 =
−a
b

= ne|τ | , (2.308)

we get a relation

ψ(r ) =

(
7ζ(3)

8π2

)1/2

n1/2
e

∆(r )

kBTc
. (2.309)
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Furthermore, substituting Eq. (2.300) for the parameter α in Eq. (2.304) for the coherence
length, we get

ξ =
~√

4mα|τ |
= ~

(
48π2

7ζ(3)

)−1/2
pF

mkBTc
|τ |−1/2 . (2.310)

Comparing this with Eq. (2.307), we express ξ in terms of the BCS gap ∆:

ξ =
1√
6

~vF
∆

. (2.311)

On a qualitative level, this relation has a meaning of the uncertainty relation: ξ sets the
uncertainty in the coordinate of a Cooper pair and ∆/vF the uncertainty in its momentum.

2.11.6 Meissner effect and Anderson-Higgs mechanism

We have already discussed the Meissner effect, and its relation to Higgs mechanism, in
Sec. 2.9.1. Here we discuss it in the framework of the Ginzburg-Landau theory.

We know that for a superfluid Bose-gas, with the energy functional given by Eq. (2.135),
fluctuations of the phase of the condensate give rise to Goldstone mode. This happens because,
due to spontaneous symmetry breaking, phase fluctuations with large wave lengths cost almost
no energy, thus giving rise to massless Goldstone bosons (Bogoliubov phonons). The same will
happen for fermionic superfluid (BCS model) as long as it is charge neutral. However, the
situation changes crucially for charged fermions—in particular, electrons. To clarify this,
consider the Ginzburg-Landau free energy (2.284) for the condensate ψ(r ) =

√
ns/2 e

iφ(r )

with fixed ns and spatially varying phase. The term involving fluctuations of the phase now
couples them to the vector potential A . We thus consider this term together with the term
corresponding to the energy of the magnetic field: F [φ;A ] =

∫
d3r F [φ(r );A (r )] with

F [φ(r );A (r )] =
1

4m

∣∣∣∣(−i~∇ +
2e

c
A

)
ψ

∣∣∣∣2 +
B 2

8π

=
ns
8m

(
~∇φ+

2e

c
A

)2

+
(∇ ×A )2

8π
. (2.312)

The term proportional to ∇φ can be absorbed by a gauge transformation by defining A ′ =
A+(~c/2e)∇φ. Further, ∇×A ′ = ∇×A (which is gauge invariance of the magnetic field), so
that the second term does not change its form under this transformation. To simplify notations,
we denote the field A ′ again as A . It is convenient to pass to the Fourier (momentum) space,
A (r ) → A q . Further, we split A q into components parallel and transverse to q , which we

denote as A
‖
q and A ⊥

q , respectively. Upon Fourier transform,

B = ∇ ×A 7→ iq ×A q = iq ×A ⊥
q , (2.313)

i.e., the magnetic field depends only on transverse component. (For time-independent fields,
the longitudinal components can be always gauged out.) Focussing thus on the transverse
component, we obtain

F [A ] =
∑
q

[
ns
8m

(
2e

c

)2

A ⊥
q A

⊥
−q +

1

8π
q 2 A ⊥

q A
⊥
−q

]
=

1

8π

∑
q

(
q 2 +

4πnse
2

mc2

)
A ⊥

q A
⊥
−q .

(2.314)
This calculation reveals two central features of the problem, where the Goldstone mode

resulted from the spontaneous symmetry breaking is coupled to a gauge field. First, Goldstone
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bosons (fluctuations of the condensate phase φ) are absorbed by the gauge field. There is no
low-lying Goldstone mode in the spectrum. Second, the gauge field becomes massive. In the
static limit, this manifests itself in the Meissner effect. Varying Eq. (2.314) with respect to
A ⊥
−q and using Eq. (2.313) leads exactly to Eq. (2.233) for the magnetic field and thus to the

London penetration depth (2.236).
More generally, one can extend the Ginzburg-Landau theory by including in the action also

time dependent terms and the scalar potential ϕ . Then the term involving ∂tφ couples to the
scalar potential ϕ and is absorbed into ϕ by a gauge transformation: A ′ = A + (~c/2e)∇φ
and ϕ′ = ϕ− (~/2e)∂tφ.

This absorption of the would-be Goldstone boson by a gauge field, accompanied with
generation of mass of the gauge boson is known as Anderson-Higgs mechanism. Here
(superconductivity) it is implemented with the U(1) electromagnetic field. In particle physics
(standard model), it is realized with non-abelian SU(2) gauge fields (W and Z gauge bosons)
that are responsible for weak interactions.
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