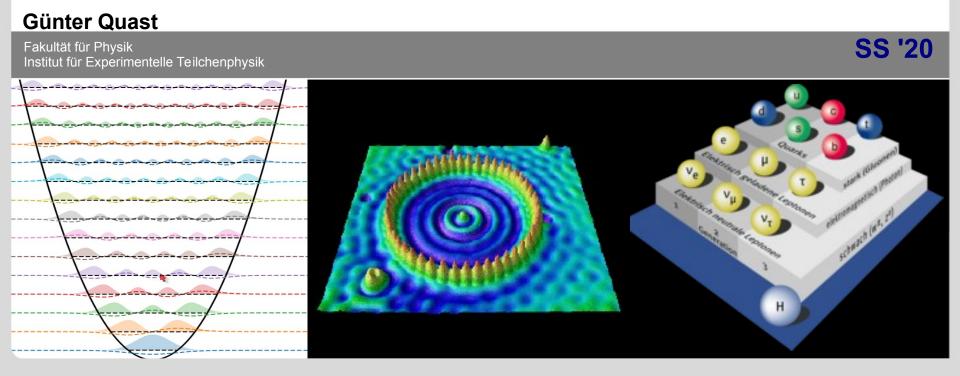


Diese Veranstaltung wir aufgezeichnet und als Medien-Cast über KIT - ILIAS bereit gestellt

Nur zur KIT-internen vorlesungsbegleitenden Nutzung, Weitergabe & anderweitige Verwendung ist untersagt

Vorlesung Moderne Physik (L)

vos: Anwendungen der Schrödingergleichung



Zusammenfassung VL07: Schrödingergleichung

Schrödingergleichung

• Schrödingergleichung:
$$\left\{ -\frac{\hbar^2}{2m} \vec{\nabla}^2 + \underbrace{V(\vec{x})}_{\text{Potential}} \right\} \Psi(\vec{x}, t) = i\hbar \frac{\partial}{\partial t} \Psi(\vec{x}, t)$$

• Wahrscheinlichkeit: $\boxed{P(\vec{x},t) = \underbrace{|\Psi(\vec{x},t)|^2}_{=\Psi^*\cdot\Psi} \text{ mit } \int \underbrace{|\Psi(\vec{x},t)|^2}_{=\Psi^*\cdot\Psi} \ dV} = 1$

• Schrödinger-Gleichung mit Impulsoperator:
$$\left\{\frac{\mathbf{p}^2}{2m} + V(\vec{x})\right\}\Psi(\vec{x},t) = i\hbar\frac{\partial}{\partial t}\Psi(x,t)$$

$$-\vec{\mathbf{p}} = -i\hbar\vec{\nabla}$$
: "Impulsoperator"

Zusammenfassung VL07: Schrödingergleichung (2)

• Weitere Operatoren:

$$-\left[\mathbf{E}=i\hbar\frac{\partial}{\partial t}\right]$$

$$-\left[\mathbf{X}=x\right]$$

$$-\left[\mathbf{V}=V(x)\right]$$

$$-\left[\mathbf{H}=\frac{\mathbf{p}^{2}}{2m}+V(x)\right]$$
,,,Hamilton-Operator"

- Kenntnis der Wellenfunktion eines Systems erlaubt die Berechnung von Erwartungswerten¹ physikalischer Observablen aus dem zugehörigen Operator: $\boxed{\langle o \rangle = \int \Psi^* O \Psi \ dV}$
 - übliche Schreibweise: $\langle o \rangle = \langle \Psi | \mathbf{O} | \Psi \rangle$
 - auch die Standardabweichung σ , oder V, die Varianz² lassen sich so berechnen: $\sigma_O{}^2 = \left< (\mathbf{O} < \mathbf{O} >)^2 \right> = < \mathbf{O}^2 > < \mathbf{O} >^2 = \left< \Psi | \mathbf{O}^2 | \Psi \right> \left< \Psi | \mathbf{O} | \Psi \right>^2$
 - Falls Ψ eine Eigenfuktion des Operators \mathbf{O} ist, also gilt $\mathbf{O}\Psi = o\Psi$ mit dem reellen Eigenwert o, so verschwindet die Varianz, d.h. die Observable ist scharf bestimmt.

Zusammenfassung VL07: Schrödingergleichung (3)

- Stationäre Schrödingergleichung:
$$\underbrace{\left\{\frac{\mathbf{p}^2}{2m} + V(\vec{x})\right\}}_{\mathbf{H}} \Psi(\vec{x}) = E \cdot \Psi(\vec{x})$$

$$- \boxed{\Psi(\vec{x},t) = \Psi(\vec{x}) \cdot e^{-i\omega t}}$$

 $|\Psi(\vec{x})|^2$ ist eine Wahrscheinlichkeitsdichte

$$- \left| P(x \in [x_0, x_0 + \Delta x)) = \int_{x_0}^{x_0 + \Delta x} |\Psi(x)|^2 dx \right|$$
 (1-dim.)

$$- P(\vec{x} \in \Delta V) = \int_{\Delta V} |\Psi(\vec{x})|^2 dV$$
 (3-dim.)

• Einfache Systeme mit der stationären Schrödingergleichung: $\frac{d^2}{dx^2}\Psi(x) = (E-V)\Psi(x) \cdot \frac{-2m}{\hbar^2}$

$$\frac{d^2}{dx^2}\Psi(x) = (E - V)\Psi(x) \cdot \frac{-2m}{\hbar^2}$$

$$-E-V>0$$
: oszillierende Lösung

$$-E-V<0$$
: exponentieller Abfall

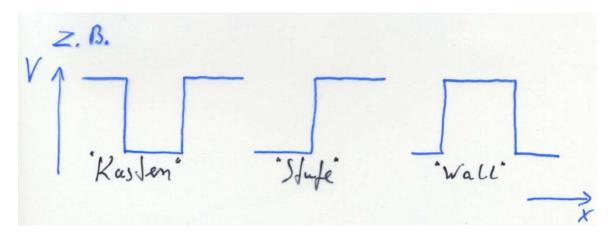
$$- E_n = \frac{\hbar^2 \pi^2}{2mL^2} \cdot n^2$$

$$- \Psi_n = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}, \ n = 1, 2, 3, \dots$$

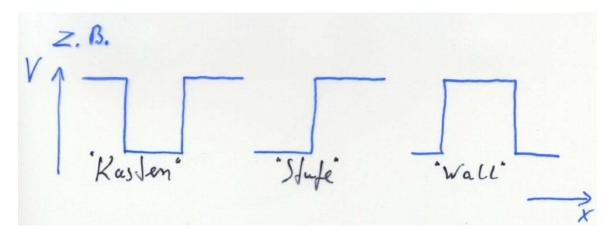
• Potential-Kasten in 3 Dimensionen: $|\Psi(\vec{x})| = A \cdot \sin(k_x \cdot x) \cdot \sin(k_y \cdot y) \cdot \sin(k_z \cdot z)$

$$-k_{x,y,z} = \frac{n_{x,y,z} \cdot \pi}{l_{x,y,z}}, n_x, n_y, n_z = 1, 2, 3, \dots$$

- Eine Quantenzahl pro Raumdimension
- Zustände mit unterschiedlichen Quantenzahlen, aber gleicher Energie nennt man entartete Zustände.



$$\frac{\mathrm{d}^2}{\mathrm{dx}^2}\psi(x) = (V - E)\psi(x)$$



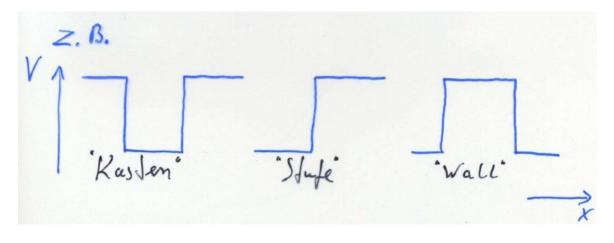
$$\frac{\mathrm{d}^2}{\mathrm{dx}^2}\psi(x) = (V - E)\psi(x)$$

(V-E) > 0: exponentiell gedämpft

Ansatz: $A \exp(\kappa x) + B \exp(-\kappa x)$

(V-E) < 0: oszillierende Lösung

Ansatz: $A \exp(ikx) + B \exp(-ikx)$



$$\frac{\mathrm{d}^2}{\mathrm{dx}^2}\psi(x) = (V - E)\psi(x)$$

(V-E) > 0: exponentiell gedämpft

Ansatz: $A \exp(\kappa x) + B \exp(-\kappa x)$

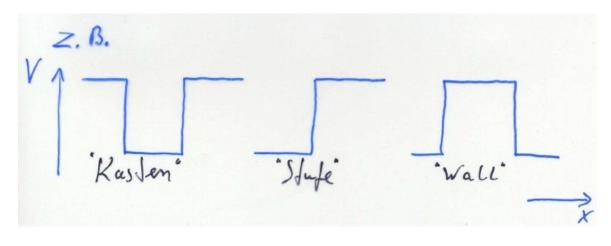
(V-E) < 0: oszillierende Lösung

Ansatz: $A \exp(ikx) + B \exp(-ikx)$

Randbedingungen:

$$\int \psi^* \psi = 1$$

$$\psi \ \mbox{und} \ \frac{\mathrm{d} \psi}{\mathrm{d} x} \ \mbox{stetig an Grenzen}$$



$$\frac{\mathrm{d}^2}{\mathrm{dx}^2}\psi(x) = (V - E)\psi(x)$$

(V-E) > 0: exponentiell gedämpft

Ansatz: $A \exp(\kappa x) + B \exp(-\kappa x)$

(V-E) < 0: oszillierende Lösung

Ansatz: $A \exp(ikx) + B \exp(-ikx)$

Randbedingungen:

$$\int \psi^* \psi = 1$$

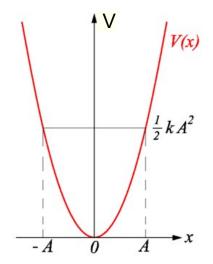
$$\psi \ \mbox{und} \ \frac{\mathrm{d} \psi}{\mathrm{d} x} \ \mbox{stetig an Grenzen}$$

→ Bedingungen an Koeffizienten (Gleichungssystem)

Inhaltsübersicht VL Moderne Physik

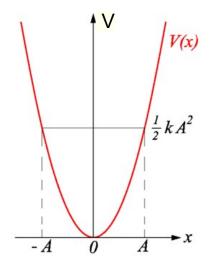
- 1) Einführung
- 2) Wiederholung wichtiger Konzepte der klassischen Physik
- 3) Spezielle Relativitätstheorie
- 4) Schlüsselexperimente und Grundlagen der Quantenphysik
- 5) Die Schrödingergleichung
- 6) Anwendungen der Schrödingergleichung
- 7) Das Wasserstoff-Atom
- 8) Atome mit mehreren Elektronen
- 9) Wechselwirkung von Licht und Materie
- 10) Grundlagen der Festkörperphysik
- 11) Kern- und Teilchenphysik
- 12) Ausblick

- in der klassischen Mechanik: Prototyp für Schwingungen
- auch in der Quantenphysik äußerst wichtig zur (näherungsweisen)
 Beschreibung gebundener Zustände



- in der klassischen Mechanik: Prototyp für Schwingungen
- auch in der Quantenphysik äußerst wichtig zur (näherungsweisen)
 Beschreibung gebundener Zustände

Hooke'sches Gesetz: F = -Dx

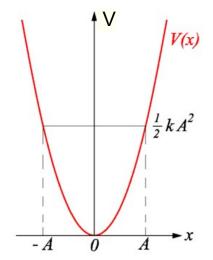


Der Harmonische Oszillator

- in der klassischen Mechanik: Prototyp für Schwingungen
- auch in der Quantenphysik äußerst wichtig zur (näherungsweisen)
 Beschreibung gebundener Zustände

Hooke'sches Gesetz:
$$F = -Dx$$

Potential:
$$V(x) = \int_x^0 -Dx \, dx = \frac{1}{2} Dx^2$$



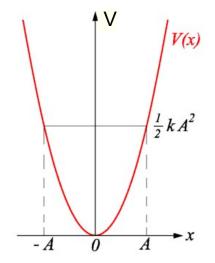
Der Harmonische Oszillator

- in der klassischen Mechanik: Prototyp für Schwingungen
- auch in der Quantenphysik äußerst wichtig zur (näherungsweisen)
 Beschreibung gebundener Zustände

Hooke'sches Gesetz: F = -Dx

Potential:
$$V(x) = \int_{x}^{0} -Dx \, dx = \frac{1}{2} Dx^{2}$$

Klass. Lösung: harmonische Schwingung mit $\omega = \sqrt{\frac{D}{m}}$



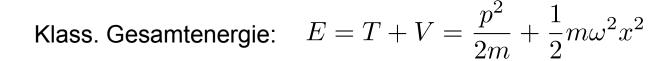
Der Harmonische Oszillator

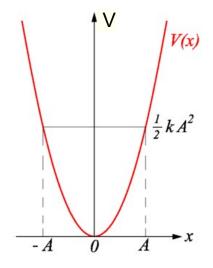
- in der klassischen Mechanik: Prototyp für Schwingungen
- auch in der Quantenphysik äußerst wichtig zur (näherungsweisen)
 Beschreibung gebundener Zustände

Hooke'sches Gesetz: F = -Dx

Potential:
$$V(x) = \int_{x}^{0} -Dx \, dx = \frac{1}{2} Dx^{2}$$

Klass. Lösung: harmonische Schwingung mit $\omega = \sqrt{\frac{D}{m}}$

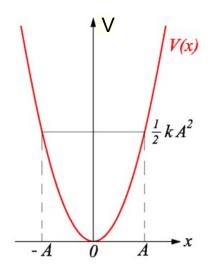




Der Harmonische Oszillator

- in der klassischen Mechanik: Prototyp für Schwingungen
- auch in der Quantenphysik äußerst wichtig zur (näherungsweisen)
 Beschreibung gebundener Zustände

Potential:
$$V(x) = \int_{x}^{0} -Dx \, dx = \frac{1}{2} Dx^{2}$$



Klass. Lösung:

harmonische Schwingung mit $\omega = \sqrt{\frac{D}{m}}$

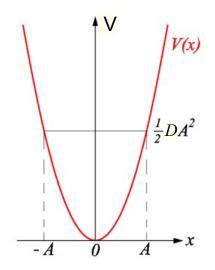
Klass. Gesamtenergie:
$$E=T+V=rac{p^2}{2m}+rac{1}{2}m\omega^2x^2$$

→ Hamilton-Operator des harmonischen Oszillators (für Schrödingergleichung)

$$\hat{\mathbf{H}} = \frac{\hat{\mathbf{p}}^2}{2m} + \frac{m\omega^2}{2}\hat{\mathbf{x}}^2 = -\frac{\hbar^2}{2m}\frac{\partial^2}{x^2} + \frac{m\omega^2}{2}x^2$$

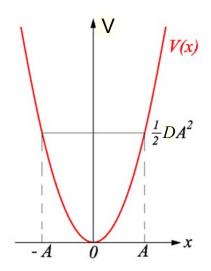
$$\hat{\mathbf{H}}\psi(x) = E\psi(x)$$

$$y := \sqrt{\frac{m\omega}{\hbar}}x$$



$$y := \sqrt{\frac{m\omega}{\hbar}} x$$

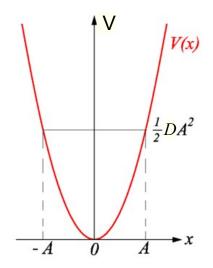
$$\rightarrow \frac{\partial^2}{\partial y^2} = \frac{m\omega}{\hbar} \frac{\partial^2}{\partial x^2} , x^2 = \frac{\hbar}{m\omega} y^2$$



$$y := \sqrt{\frac{m\omega}{\hbar}} x$$

$$\rightarrow \frac{\partial^2}{\partial u^2} = \frac{m\omega}{\hbar} \frac{\partial^2}{\partial x^2} , x^2 = \frac{\hbar}{m\omega} y^2$$

$$ightarrow$$
 S-GI.: $\left(-\frac{\hbar\omega}{2}\frac{\partial^2}{\partial y^2} + \frac{\hbar\omega}{2}\right)\psi(y) = E\psi(y)$



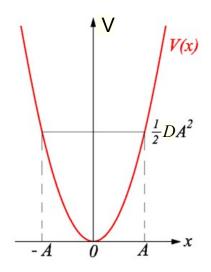
$$y := \sqrt{\frac{m\omega}{\hbar}}x$$

$$\rightarrow \frac{\partial^2}{\partial y^2} = \frac{m\omega}{\hbar} \frac{\partial^2}{\partial x^2} , x^2 = \frac{\hbar}{m\omega} y^2$$

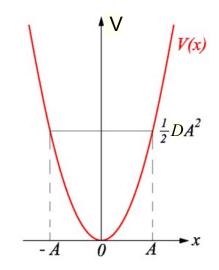
$$ightarrow$$
 S-GI.: $\left(-\frac{\hbar\omega}{2}\frac{\partial^2}{\partial y^2} + \frac{\hbar\omega}{2}\right)\psi(y) = E\psi(y)$

$$\text{mit } C := \frac{2E}{\hbar\omega} \ \to \ \left(\frac{\partial^2}{\partial y^2} + (y^2 - C)\right)\psi(y) \ = \ 0$$

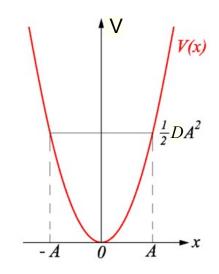
$$\leftrightarrow \ \psi'' + (C - y^2)\psi = 0$$



$$\psi(y) = A \exp\left(-\frac{y^2}{2}\right)$$



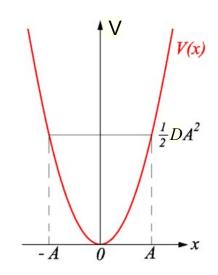
$$\psi(y) = A \exp\left(-\frac{y^2}{2}\right)$$
$$\psi' = -y \exp\left(-\frac{y^2}{2}\right);$$



$$\psi(y) = A \exp\left(-\frac{y^2}{2}\right)$$

$$\psi' = -y \exp\left(-\frac{y^2}{2}\right);$$

$$\psi'' = -\exp\left(-\frac{y^2}{2}\right) + y^2 \exp\left(-\frac{y^2}{2}\right)$$

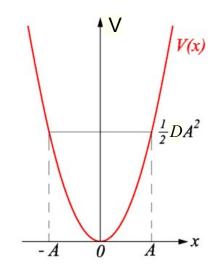


$$\psi(y) = A \exp\left(-\frac{y^2}{2}\right)$$

$$\psi' = -y \exp\left(-\frac{y^2}{2}\right);$$

$$\psi'' = -\exp\left(-\frac{y^2}{2}\right) + y^2 \exp\left(-\frac{y^2}{2}\right)$$

$$\leftrightarrow \psi'' = \psi(y^2 - 1)$$
 Ansatz löst DGL für C=1



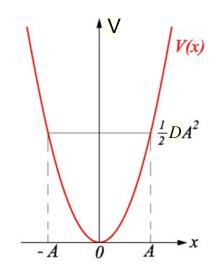
$$\psi(y) = A \exp\left(-\frac{y^2}{2}\right)$$

$$\psi' = -y \exp\left(-\frac{y^2}{2}\right);$$

$$\psi'' = -\exp\left(-\frac{y^2}{2}\right) + y^2 \exp\left(-\frac{y^2}{2}\right)$$

$$\leftrightarrow \psi'' = \psi(y^2 - 1)$$
 Ansatz löst DGL für C=1

2. Ansatz:
$$\psi(y) = A(y) \exp\left(-\frac{y^2}{2}\right)$$

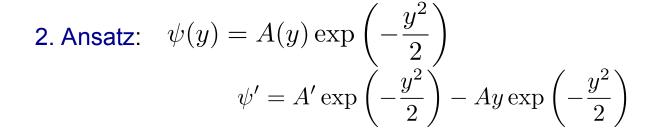


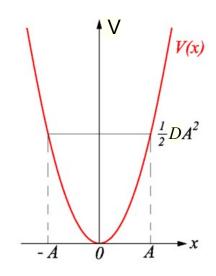
$$\psi(y) = A \exp\left(-\frac{y^2}{2}\right)$$

$$\psi' = -y \exp\left(-\frac{y^2}{2}\right);$$

$$\psi'' = -\exp\left(-\frac{y^2}{2}\right) + y^2 \exp\left(-\frac{y^2}{2}\right)$$

$$\leftrightarrow \ \psi'' = \psi(y^2 - 1)$$
 Ansatz löst DGL für C=1

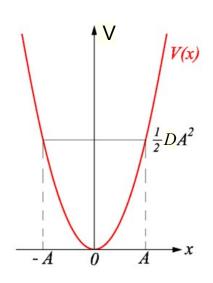




$$\psi(y) = A \exp\left(-\frac{y^2}{2}\right)$$

$$\psi' = -y \exp\left(-\frac{y^2}{2}\right);$$

$$\psi'' = -\exp\left(-\frac{y^2}{2}\right) + y^2 \exp\left(-\frac{y^2}{2}\right)$$



$$\leftrightarrow \psi'' = \psi(y^2 - 1)$$
 Ansatz löst DGL für C=1

2. Ansatz:
$$\psi(y) = A(y) \exp\left(-\frac{y^2}{2}\right)$$

$$\psi' = A' \exp\left(-\frac{y^2}{2}\right) - Ay \exp\left(-\frac{y^2}{2}\right)$$

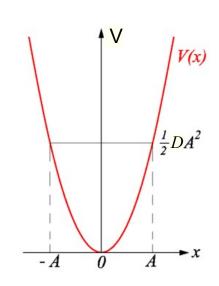
$$\psi'' = A'' \exp\left(-\frac{y^2}{2}\right) - A'y \exp\left(-\frac{y^2}{2}\right) - A'y \exp\left(-\frac{y^2}{2}\right)$$

$$-A \exp\left(-\frac{y^2}{2}\right) + Ay^2 \exp\left(-\frac{y^2}{2}\right)$$

$$\psi(y) = A \exp\left(-\frac{y^2}{2}\right)$$

$$\psi' = -y \exp\left(-\frac{y^2}{2}\right);$$

$$\psi'' = -\exp\left(-\frac{y^2}{2}\right) + y^2 \exp\left(-\frac{y^2}{2}\right)$$



$$\leftrightarrow \psi'' = \psi(y^2 - 1)$$
 Ansatz löst DGL für C=1

2. Ansatz:
$$\psi(y) = A(y) \exp\left(-\frac{y^2}{2}\right)$$

$$\psi' = A' \exp\left(-\frac{y^2}{2}\right) - Ay \exp\left(-\frac{y^2}{2}\right)$$

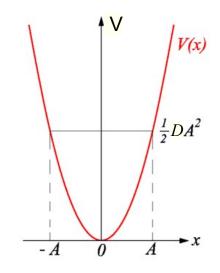
$$\psi'' = A'' \exp\left(-\frac{y^2}{2}\right) - A'y \exp\left(-\frac{y^2}{2}\right) - A'y \exp\left(-\frac{y^2}{2}\right)$$

$$-A \exp\left(-\frac{y^2}{2}\right) + Ay^2 \exp\left(-\frac{y^2}{2}\right)$$

$$= \left(A'' - 2yA' + A(y^2 - 1)\right) \exp\left(-\frac{y^2}{2}\right)$$

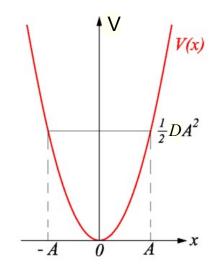
$$\Rightarrow A'' - 2yA' + (C-1)A = 0$$

neue DGL für Koeffizientenfunktion



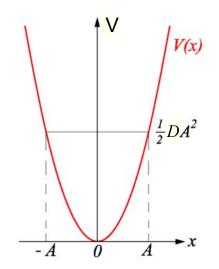
$$\Rightarrow A'' - 2yA' + (C-1)A = 0$$

neue DGL für Koeffizientenfunktion: "Hermite'sche DGL",



$$\Rightarrow A'' - 2yA' + (C-1)A = 0$$

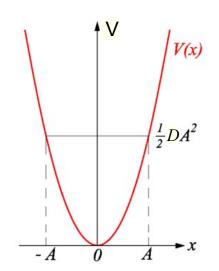
neue DGL für Koeffizientenfunktion : "Hermite'sche DGL", wird gelöst durch die Hermite'schen Polynome H_n



$$\Rightarrow A'' - 2yA' + (C-1)A = 0$$

neue DGL für Koeffizientenfunktion : "Hermite'sche DGL", wird gelöst durch die Hermite'schen Polynome H_n Lösung durch Potenzreihenansatz:

$$H_n(y) = \sum_{i=1}^n a_i y^i$$

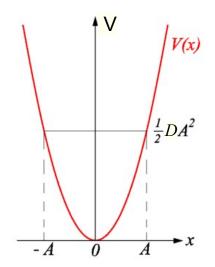


$$\Rightarrow A'' - 2yA' + (C-1)A = 0$$

neue DGL für Koeffizientenfunktion: "Hermite'sche DGL", wird gelöst durch die Hermite'schen Polynome H_n Lösung durch Potenzreihenansatz:

$$H_n(y) = \sum_{i=1}^n a_i y^i$$

$$H'_n = \sum_{j=1}^n j a_j y^{j-1} = \sum_{i=0}^{n-1} (i+1)a_{i+1} y^i$$



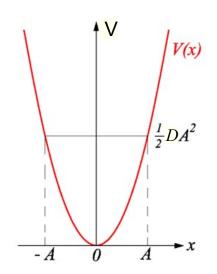
$$\Rightarrow A'' - 2yA' + (C-1)A = 0$$

neue DGL für Koeffizientenfunktion : "Hermite'sche DGL", wird gelöst durch die Hermite'schen Polynome H_n Lösung durch Potenzreihenansatz:

$$H_n(y) = \sum_{i=1}^n a_i y^i$$

$$H'_n = \sum_{j=1}^n j a_j y^{j-1} = \sum_{i=0}^{n-1} (i+1) a_{i+1} y^i$$

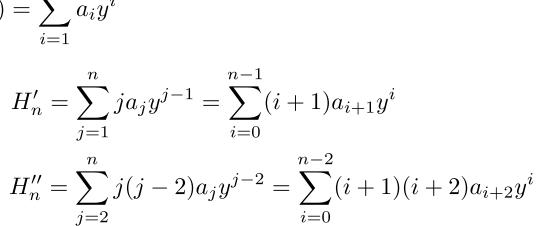
$$H_n'' = \sum_{j=2}^n j(j-2)a_j y^{j-2} = \sum_{i=0}^{n-2} (i+1)(i+2)a_{i+2} y^i$$



$$\Rightarrow A'' - 2yA' + (C-1)A = 0$$

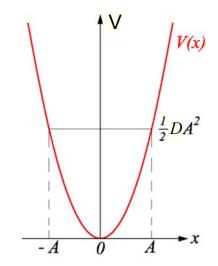
neue DGL für Koeffizientenfunktion: "Hermite'sche DGL", wird gelöst durch die Hermite'schen Polynome H_n Lösung durch Potenzreihenansatz:

$$H_n(y) = \sum_{i=1}^n a_i y^i$$



Einsetzen in Hermite'sche DGL:

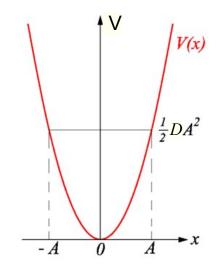
$$\sum_{i=0}^{n-2} (i+1)(i+2)a_{i+2}y^{i} - 2y\sum_{j=1}^{n} ja_{j}y^{j-1} + (C-1)\sum_{i=0}^{n} a_{i}y^{i} = 0$$



$$\Rightarrow A'' - 2yA' + (C-1)A = 0$$

neue DGL für Koeffizientenfunktion : "Hermite'sche DGL", wird gelöst durch die Hermite'schen Polynome H_n Lösung durch Potenzreihenansatz:

$$H_n(y) = \sum_{i=1}^n a_i y^i$$



$$H'_n = \sum_{j=1}^n j a_j y^{j-1} = \sum_{i=0}^{n-1} (i+1) a_{i+1} y^i$$

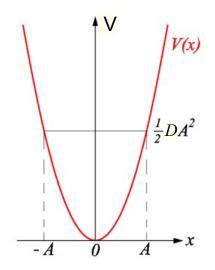
$$H''_n = \sum_{j=2}^n j (j-2) a_j y^{j-2} = \sum_{i=0}^{n-2} (i+1) (i+2) a_{i+2} y^i$$

Einsetzen in Hermite'sche DGL:

$$\sum_{i=0}^{n-2} (i+1)(i+2)a_{i+2}y^{i} - 2y\sum_{j=1}^{n} ja_{j}y^{j-1} + (C-1)\sum_{i=0}^{n} a_{i}y^{i} = 0$$

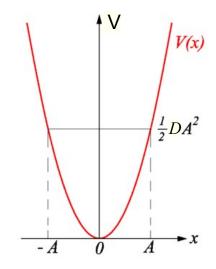
$$-2\sum_{i=1}^{n} ja_{j}y^{j} +$$

Vergleich der Koeffizienten für gleiche i \rightarrow Rekursionsformel :



Vergleich der Koeffizienten für gleiche i \rightarrow Rekursionsformel :

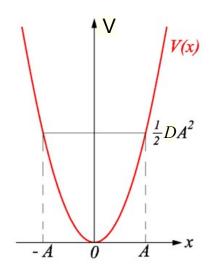
$$(i+2)(i+1)a_{i+2} = (2i - (C-1))a_i$$



Vergleich der Koeffizienten für gleiche i → Rekursionsformel :

$$(i+2)(i+1)a_{i+2} = (2i - (C-1))a_i$$

Die Potenzreihe muss für alle y endlich bleiben (wegen Normierbarkeit von Ψ): $\psi_n(y) = H_n(y) \exp{(-\frac{y^2}{2})}$

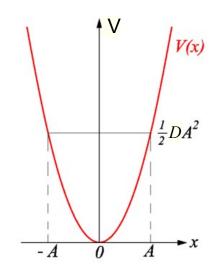


Vergleich der Koeffizienten für gleiche i \rightarrow Rekursionsformel :

$$(i+2)(i+1)a_{i+2} = (2i - (C-1))a_i$$

Die Potenzreihe muss für alle y endlich bleiben (wegen Normierbarkeit von Ψ): $\psi_n(y) = H_n(y) \exp{(-\frac{y^2}{2})}$

 \rightarrow Abbruch bei $a_{n+2}=0$



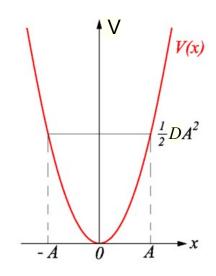
Vergleich der Koeffizienten für gleiche i \rightarrow Rekursionsformel :

$$(i+2)(i+1)a_{i+2} = (2i - (C-1))a_i$$

Die Potenzreihe muss für alle y endlich bleiben (wegen Normierbarkeit von Ψ): $\psi_n(y) = H_n(y) \exp{(-\frac{y^2}{2})}$

 \rightarrow Abbruch bei $a_{n+2}=0$

$$\rightarrow 2n - (c-1)a_n = 0 \Leftrightarrow C = 2n+1$$



Vergleich der Koeffizienten für gleiche i \rightarrow Rekursionsformel :

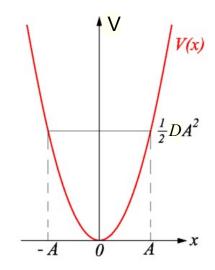
$$(i+2)(i+1)a_{i+2} = (2i - (C-1))a_i$$

Die Potenzreihe muss für alle y endlich bleiben (wegen Normierbarkeit von Ψ): $\psi_n(y) = H_n(y) \exp{(-\frac{y^2}{2})}$

 \rightarrow Abbruch bei $a_{n+2}=0$

$$\rightarrow 2n - (c-1)a_n = 0 \Leftrightarrow C = 2n+1$$

Einsetzen:
$$C=\frac{2E}{\hbar\omega}$$
 $\Rightarrow E=(n+\frac{1}{2})\hbar\omega$



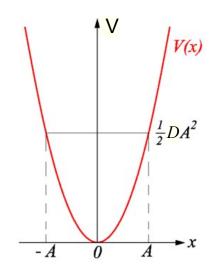
Vergleich der Koeffizienten für gleiche i \rightarrow Rekursionsformel :

$$(i+2)(i+1)a_{i+2} = (2i - (C-1))a_i$$

Die Potenzreihe muss für alle y endlich bleiben (wegen Normierbarkeit von Ψ): $\psi_n(y) = H_n(y) \exp{(-\frac{y^2}{2})}$

$$\rightarrow 2n - (c-1)a_n = 0 \Leftrightarrow C = 2n+1$$

Einsetzen:
$$C = \frac{2E}{\hbar\omega}$$
 $\Rightarrow E = (n + \frac{1}{2})\hbar\omega$



Resultat:

Zur Lösung
$$\psi_n(y)=H_n(y)\exp{(-\frac{y^2}{2})}$$
 gehört die Energie $E_n=(n+\frac{1}{2})\hbar\omega$

Vergleich der Koeffizienten für gleiche i → Rekursionsformel :

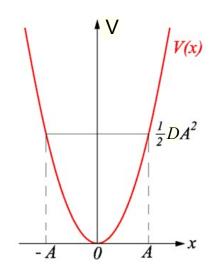
$$(i+2)(i+1)a_{i+2} = (2i - (C-1))a_i$$

Die Potenzreihe muss für alle y endlich bleiben (wegen Normierbarkeit von Ψ): $\psi_n(y) = H_n(y) \exp{(-\frac{y^2}{2})}$

 \rightarrow Abbruch bei $a_{n+2}=0$

$$\rightarrow 2n - (c-1)a_n = 0 \Leftrightarrow C = 2n+1$$

Einsetzen:
$$C = \frac{2E}{\hbar\omega}$$
 $\Rightarrow E = (n + \frac{1}{2})\hbar\omega$



Resultat:

Zur Lösung
$$\psi_n(y)=H_n(y)\exp{(-\frac{y^2}{2})}$$
 gehört die Energie $E_n=(n+\frac{1}{2})\hbar\omega$

Nullpunktsenergie $\frac{1}{2}\hbar\omega$

Ohne Rechnung:

Hermite-Plynome, mit
$$\int |\psi_n(y)|^2=1$$

$$H_0(y)=1$$

$$H_1(y)=2y$$

$$H_3(y)=4y^2-2$$

$$H_4(y)=16y^4-48y^2+12$$

Ohne Rechnung:

Hermite-Plynome, mit
$$\int |\psi_n(y)|^2 = 1$$
 $H_0(y) = 1$ $H_1(y) = 2y$ $H_3(y) = 4y^2 - 2$ $H_4(y) = 16y^4 - 48y^2 + 12$

$$\Rightarrow \psi_n(x) = H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) \exp\left(-\frac{m\omega}{2\hbar}x^2\right)$$

Ohne Rechnung:

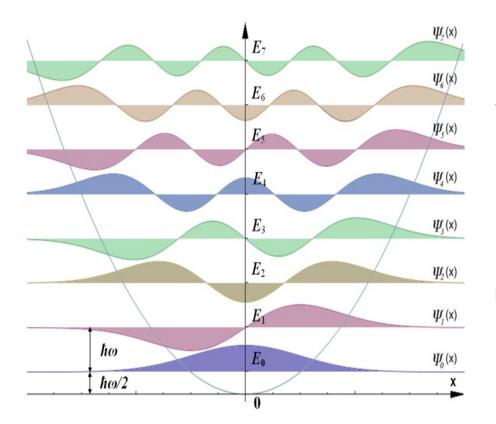
Hermite-Plynome, mit $\int |\psi_n(y)|^2 = 1$

$$H_0(y) = 1$$

$$H_1(y) = 2y$$

$$H_3(y) = 4y^2 - 2$$

$$H_4(y) = 16y^4 - 48y^2 + 12$$



$$\Rightarrow \psi_n(x) = H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) \exp\left(-\frac{m\omega}{2\hbar}x^2\right)$$

Pause

und Zeit für Fragen?

- numerische Lösung

Numerische Lösung mit

Ableitungsmatrix und Potential an Stützstellen:

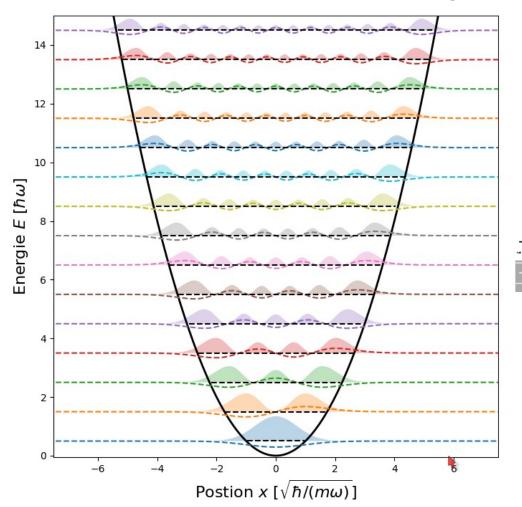
$$\left(-\frac{\hbar^2}{2m}(\mathbf{D_2}) + m\omega(\mathbf{x^2})\right)(\psi) = E(\psi)$$

- numerische Lösung

Numerische Lösung mit

Ableitungsmatrix und Potential an Stützstellen:

$$\left(-\frac{\hbar^2}{2m}(\mathbf{D_2}) + m\omega(\mathbf{x^2})\right)(\psi) = E(\psi)$$



- numerische Lösung

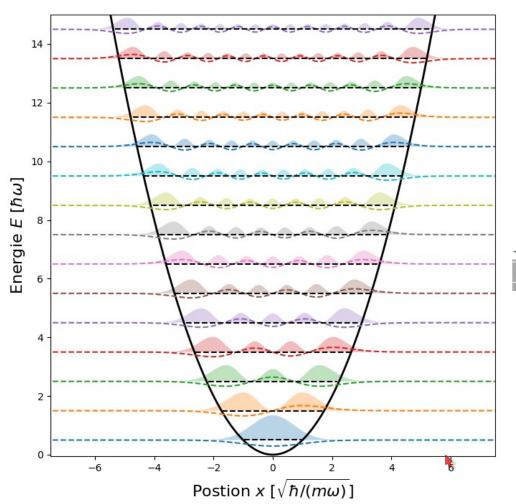
Numerische Lösung mit Ableitungsmatrix und Potential

an Stützstellen:

$$\left(-\frac{\hbar^2}{2m}(\mathbf{D_2}) + m\omega(\mathbf{x^2})\right)(\psi) = E(\psi)$$

Zur Methode s. Erklärung am Beispiel des endlichen Potentialtopfs:

Bestimmung der Eigenwerte und Eigenvektoren einer Matrix mit Methoden der linearen Algebra



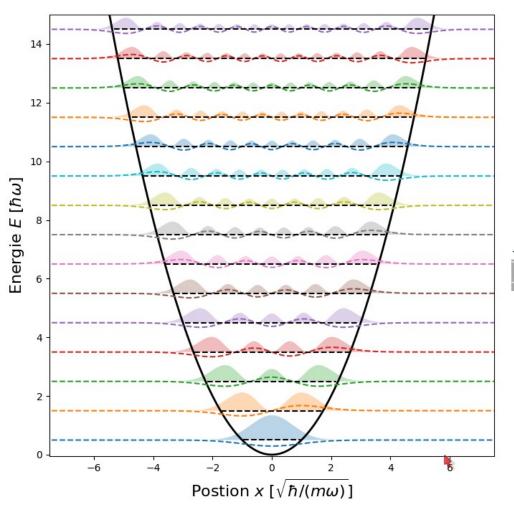
- numerische Lösung

Numerische Lösung mit Ableitungsmatrix und Potential an Stützstellen:

$$\left(-\frac{\hbar^2}{2m}(\mathbf{D_2}) + m\omega(\mathbf{x^2})\right)(\psi) = E(\psi)$$

Zur Methode s. Erklärung am Beispiel des endlichen Potentialtopfs:

Bestimmung der Eigenwerte und Eigenvektoren einer Matrix mit Methoden der linearen Algebra



Anmerkung: Auffällig ist, dass für große n die Aufenthaltswahrscheinlichkeit am Rand, also an den klassischen Umkehrpunkten, größer wird!

- numerische Lösung (2)

Alternativ wird die Differentialgleichung zweiter Ordnung numerisch gelöst Vorgehensweise:

Bestimmung eines Werts für E, der die Randbedingung erfüllt, durch Iteration (z.B. mit Bisektion oder Newton-Verfahren)

- numerische Lösung (2)

Alternativ wird die Differentialgleichung zweiter Ordnung numerisch gelöst Vorgehensweise:

Umwandlung in ein System von Dgl. 1. Ordnung durch Einführen einer weiteren Funktion $\phi = \psi'$

$$\psi'' = \frac{2m}{\hbar^2} (V - E)\psi \to \begin{cases} \psi' = \phi \\ \phi' = \frac{2m}{\hbar^2} (V - E)\psi \end{cases}$$

Bestimmung eines Werts für E, der die Randbedingung erfüllt, durch Iteration (z.B. mit Bisektion oder Newton-Verfahren)

- numerische Lösung (2)

Alternativ wird die Differentialgleichung zweiter Ordnung numerisch gelöst

Vorgehensweise:

Umwandlung in ein System von Dgl. 1. Ordnung durch Einführen einer weiteren Funktion $\phi = \psi'$

$$\psi'' = \frac{2m}{\hbar^2} (V - E)\psi \to \begin{cases} \psi' = \phi \\ \phi' = \frac{2m}{\hbar^2} (V - E)\psi \end{cases}$$

Wahl von Anfangsbedingungen am linken Rand

$$\psi(x_0)=\psi_0$$
 $\phi(x_0)=\psi'(x_0)=\phi_0$ d.h. Wahl eines Start-Werts für E

Bestimmung eines Werts für E, der die Randbedingung erfüllt, durch Iteration (z.B. mit Bisektion oder Newton-Verfahren)

- numerische Lösung (2)

Alternativ wird die Differentialgleichung zweiter Ordnung numerisch gelöst

Vorgehensweise:

Umwandlung in ein System von Dgl. 1. Ordnung durch Einführen einer weiteren Funktion $\phi = \psi'$

$$\psi'' = \frac{2m}{\hbar^2} (V - E)\psi \to \begin{cases} \psi' = \phi \\ \phi' = \frac{2m}{\hbar^2} (V - E)\psi \end{cases}$$

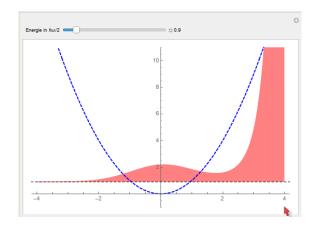
Wahl von Anfangsbedingungen am linken Rand

$$\psi(x_0)=\psi_0$$
 $\phi(x_0)=\psi'(x_0)=\phi_0$ d.h. Wahl eines Start-Werts für E

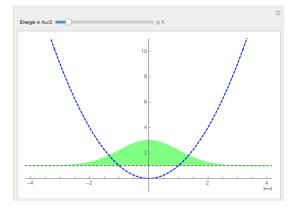
- Lösung dieses Anfangswertproblems mit Standard-Verfahren (z.B. Runge-Kutta) → Wert für $\psi(x_r)$ am rechten Rand.
- Bestimmung eines Werts für E, der die Randbedingung erfüllt, durch Iteration (z.B. mit Bisektion oder Newton-Verfahren)

(interaktives) Beispiel

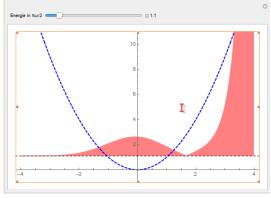
Didaktisch motiviertes Beispiel: Einstellung der Energie über Schieberegler



Energie zu niedrig, Wellenfunktion divergiert



Energie passt, Randbedingung erfüllt



Energie zu hoch, Wellenfunktion divergiert

Harmonischer Oszillator: QM

klassisch

Vergleich mit klassischer Aufenthaltswahrscheinlichkeit:

Harmonischer Oszillator: QM

klassisch

Vergleich mit klassischer Aufenthaltswahrscheinlichkeit:

? Mit welcher Wahrscheinlichkeit befindet sich ein klassischer Oszillator mit Periodendauer T am Ort x (wenn man immer wieder zufällig nachschaut) ?

? Mit welcher Wahrscheinlichkeit befindet sich ein klassischer Oszillator mit Periodendauer T am Ort x (wenn man immer wieder zufällig nachschaut) ?

Aufenthaltswahrscheinlichkeit während einer halben Periodendauer T: $dw = \frac{2}{T}dt$

? Mit welcher Wahrscheinlichkeit befindet sich ein klassischer Oszillator mit Periodendauer T am Ort x (wenn man immer wieder zufällig nachschaut) ?

Aufenthaltswahrscheinlichkeit während einer halben Periodendauer T: $dw = \frac{2}{T}dt$

$$mit dt = dx \frac{1}{\frac{dx}{dt}}$$

? Mit welcher Wahrscheinlichkeit befindet sich ein klassischer Oszillator mit Periodendauer T am Ort x (wenn man immer wieder zufällig nachschaut) ?

Aufenthaltswahrscheinlichkeit während einer halben Periodendauer T: $dw = \frac{2}{T}dt$

$$mit dt = dx \frac{1}{\frac{dx}{dt}}$$

$$\rightarrow dw \propto \frac{1}{v(x)T} dx$$

$$\Rightarrow w(x) \propto \frac{1}{v(x)T}$$

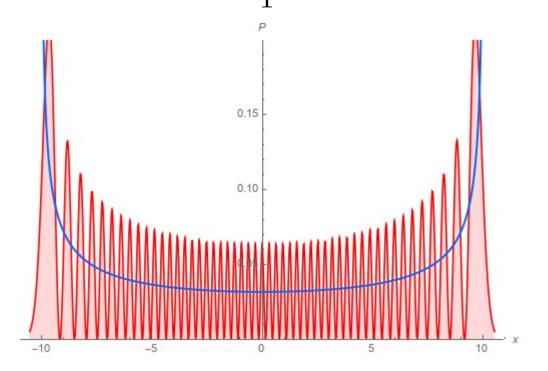
? Mit welcher Wahrscheinlichkeit befindet sich ein klassischer Oszillator mit Periodendauer T am Ort x (wenn man immer wieder zufällig nachschaut) ?

Aufenthaltswahrscheinlichkeit während einer halben Periodendauer T: $dw = \frac{2}{T}dt$

$$mit dt = dx \frac{1}{\frac{dx}{dt}}$$

$$\rightarrow dw \propto \frac{1}{v(x)T} dx$$

$$\Rightarrow w(x) \propto \frac{1}{v(x)T}$$



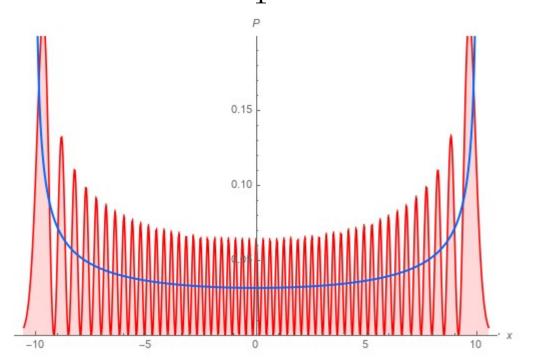
https://demonstrations.wolfram.com/ QuantumClassicalCorrespondenceF orTheHarmonicOscillator.cdf ? Mit welcher Wahrscheinlichkeit befindet sich ein klassischer Oszillator mit Periodendauer T am Ort x (wenn man immer wieder zufällig nachschaut) ?

Aufenthaltswahrscheinlichkeit während einer halben Periodendauer T: $dw = \frac{2}{T}dt$

$$mit dt = dx \frac{1}{\frac{dx}{dt}}$$

$$\rightarrow dw \propto \frac{1}{v(x)T} dx$$

$$\Rightarrow w(x) \propto \frac{1}{v(x)T}$$

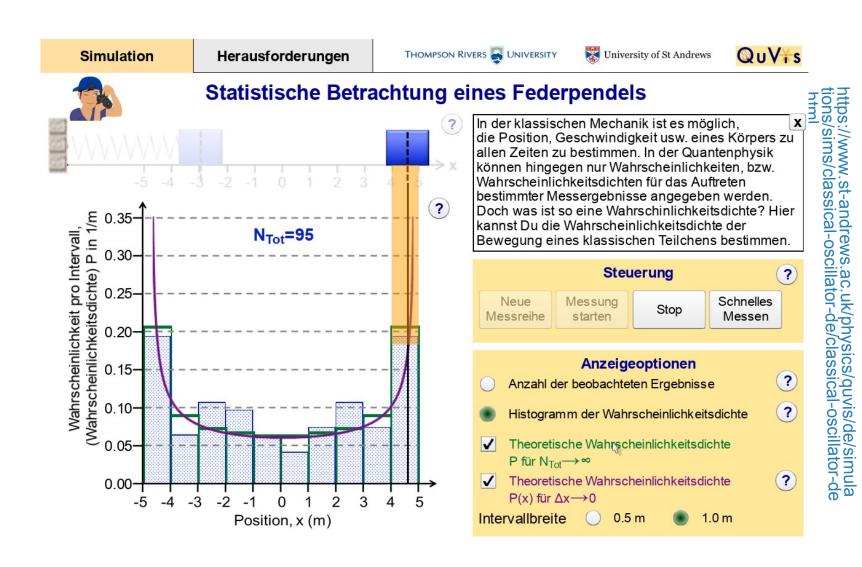


https://demonstrations.wolfram.com/
QuantumClassicalCorrespondenceF

Quantenmechanische und klassische Aufenthaltswahrscheinlichkeit näher sich für große n an \rightarrow Bohrs Korrespondenzprinzip

App zum Harmonischen Oszillator

Zur Illustration gibt es eine sehr schöne Web-App von der St. Andrews University:



Wenn ein Teilchen in einem Potential gebunden ist, ist es dort lokalisiert

 \rightarrow die Ortsunschärfe Δx ist endlich

Wenn ein Teilchen in einem Potential gebunden ist, ist es dort lokalisiert

 \rightarrow die Ortsunschärfe Δx ist endlich

Aus der Unschärferelation $\Delta x \Delta p \geq \frac{\hbar}{2}$ folgt,

dass auch der Impuls eine Unschärfe haben muss: $\Delta p \geq \frac{\hbar}{2\Delta x}$

Wenn ein Teilchen in einem Potential gebunden ist, ist es dort lokalisiert

 \rightarrow die Ortsunschärfe Δx ist endlich

Aus der Unschärferelation $\Delta x \Delta p \geq \frac{\hbar}{2}$ folgt,

dass auch der Impuls eine Unschärfe haben muss: $\Delta p \geq \frac{\hbar}{2\Delta x}$

Beispiel harmonischer Oszillator: $\psi_0 \propto \exp(-\frac{m\omega}{2\hbar}x^2) \rightarrow |\psi_0|^2 \propto \exp(-\frac{m\omega}{\hbar}x^2)$

Wenn ein Teilchen in einem Potential gebunden ist, ist es dort lokalisiert

 \rightarrow die Ortsunschärfe Δx ist endlich

Aus der Unschärferelation $\Delta x \Delta p \geq \frac{\hbar}{2}$ folgt,

dass auch der Impuls eine Unschärfe haben muss: $\Delta p \geq \frac{\hbar}{2\Delta x}$

Beispiel harmonischer Oszillator: $\psi_0 \propto \exp(-\frac{m\omega}{2\hbar}x^2) \rightarrow |\psi_0|^2 \propto \exp(-\frac{m\omega}{\hbar}x^2)$

Das ist eine Gaußverteilung mit Varianz $(\Delta x)^2 = \frac{\hbar}{2m\omega}$

Wenn ein Teilchen in einem Potential gebunden ist, ist es dort lokalisiert

 \rightarrow die Ortsunschärfe Δx ist endlich

Aus der Unschärferelation $\Delta x \Delta p \geq \frac{\hbar}{2}$ folgt,

dass auch der Impuls eine Unschärfe haben muss: $\Delta p \geq \frac{\hbar}{2\Delta x}$

Beispiel harmonischer Oszillator: $\psi_0 \propto \exp(-\frac{m\omega}{2\hbar}x^2) \rightarrow |\psi_0|^2 \propto \exp(-\frac{m\omega}{\hbar}x^2)$

Das ist eine Gaußverteilung mit Varianz $(\Delta x)^2 = \frac{\hbar}{2m\omega}$

Die Varianz des Impulses ergibt sich mit p>= 0 zu

$$(\Delta p)^2 = \langle \psi_0 | \hat{\mathbf{p}^2} | \psi_0 \rangle = \dots = \frac{1}{2} \hbar m \omega$$

Wenn ein Teilchen in einem Potential gebunden ist, ist es dort lokalisiert

 \rightarrow die Ortsunschärfe Δx ist endlich

Aus der Unschärferelation $\Delta x \Delta p \geq \frac{\hbar}{2}$ folgt,

dass auch der Impuls eine Unschärfe haben muss: $\Delta p \geq \frac{\hbar}{2\Delta x}$

Beispiel harmonischer Oszillator:
$$\psi_0 \propto \exp(-\frac{m\omega}{2\hbar}x^2) \rightarrow |\psi_0|^2 \propto \exp(-\frac{m\omega}{\hbar}x^2)$$

Das ist eine Gaußverteilung mit Varianz $(\Delta x)^2 = \frac{\hbar}{2m\omega}$

Die Varianz des Impulses ergibt sich mit p>= 0 zu

$$(\Delta p)^2 = \langle \psi_0 | \hat{\mathbf{p}^2} | \psi_0 \rangle = \dots = \frac{1}{2} \hbar m \omega$$

$$\Rightarrow \Delta x \Delta p = \frac{\hbar}{2} \qquad \text{der Grundzustand des harmonischen Oszillators} \\ \text{erfüllt die Unschärferelation exakt !}$$

Wenn ein Teilchen in einem Potential gebunden ist, ist es dort lokalisiert

 \rightarrow die Ortsunschärfe Δx ist endlich

Aus der Unschärferelation $\Delta x \Delta p \geq \frac{\hbar}{2}$ folgt,

dass auch der Impuls eine Unschärfe haben muss: $\Delta p \geq \frac{\hbar}{2\Delta x}$

Beispiel harmonischer Oszillator:
$$\psi_0 \propto \exp(-\frac{m\omega}{2\hbar}x^2) \rightarrow |\psi_0|^2 \propto \exp(-\frac{m\omega}{\hbar}x^2)$$

Das ist eine Gaußverteilung mit Varianz $(\Delta x)^2 = \frac{\hbar}{2m\omega}$

Die Varianz des Impulses ergibt sich mit p>= 0 zu

$$(\Delta p)^2 = \langle \psi_0 | \hat{\mathbf{p}^2} | \psi_0 \rangle = \dots = \frac{1}{2} \hbar m \omega$$

$$\Rightarrow \Delta x \Delta p = \frac{\hbar}{2}$$
 der Grundzustand des harmonischen Oszillators erfüllt die Unschärferelation exakt!

Auch bei anderen Potentialformen kann man die Unschärferelation anwenden, um die Größenordnung des Impulses im Grundzustand und damit die Grundzustandsenergie abzuschätzen : $p_0 \simeq \Delta p$

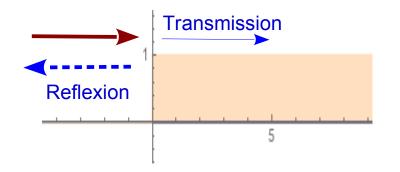
Ebene Welle und Teilchenstrom

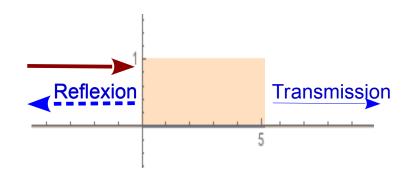
Ein konstanter Teilchenstrom j kann durch eine komplexe ebene Welle $A \exp i(\vec{k}\cdot\vec{x}-\omega t)$ beschrieben werden.

Es gilt:
$$\vec{j} = \rho \cdot \vec{v} = \frac{\hbar}{m} \vec{k} \cdot |A|^2$$

Typische Beispiele:

Streuung eines Teilchenstrahls an Potentialstufe und Potentialwall (1-dim.).





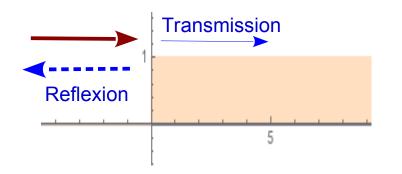
Ein konstanter Teilchenstrom j kann durch eine komplexe ebene Welle $A \exp i(\vec k \cdot \vec x - \omega t)$ beschrieben werden.

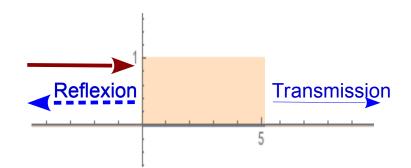
Es gilt:
$$\vec{j} = \rho \cdot \vec{v} = \frac{\hbar}{m} \vec{k} \cdot |A|^2$$

Die stationäre Schrödingergleichung ist anwendbar.

Typische Beispiele:

Streuung eines Teilchenstrahls an Potentialstufe und Potentialwall (1-dim.).





Ebene Welle und Teilchenstrom

Ein konstanter Teilchenstrom j kann durch eine komplexe ebene Welle $A \exp i(\vec{k}\cdot\vec{x}-\omega t)$ beschrieben werden.

Es gilt:
$$\vec{j} = \rho \cdot \vec{v} = \frac{\hbar}{m} \vec{k} \cdot |A|^2$$

Die stationäre Schrödingergleichung ist anwendbar.

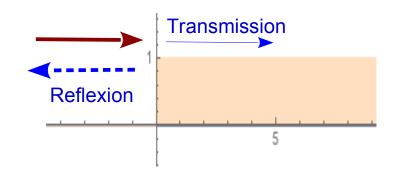
Einlaufende ebene Welle:
$$\Psi_1(x,t) = \frac{jm}{\hbar k} \exp(ikx) \exp(-i\omega t) = \psi(x) \exp(-i\omega t)$$

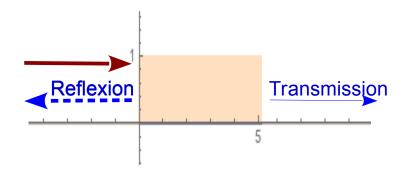
$$\Psi_1(x,t) \text{ ist Lösung der freien S-GI.}$$

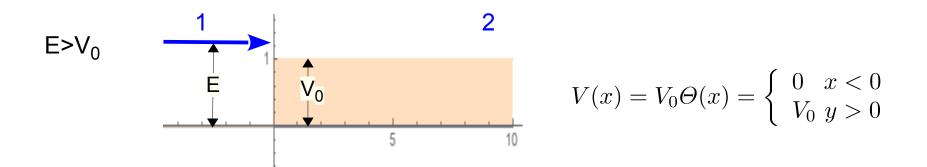
$$\psi_1(x) \text{ ist Lösung der stationären, freien S-GI.}$$

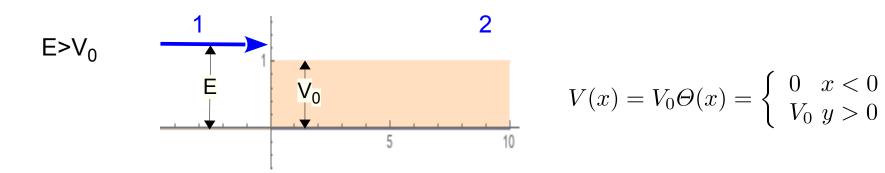
Typische Beispiele:

Streuung eines Teilchenstrahls an Potentialstufe und Potentialwall (1-dim.).





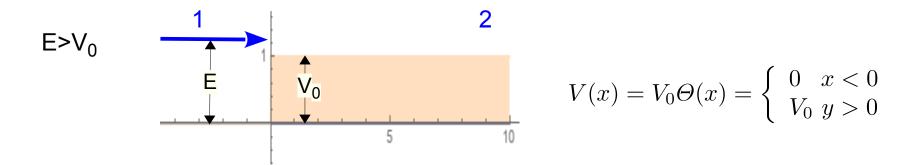




S-GI. für Gebiet 1:

$$-\frac{\hbar^2}{2m}\frac{2}{\partial x^2}\psi(x) = E\psi(x)$$

$$\psi'' = -\frac{2mE}{\hbar^2} \psi := -k^2 \psi$$



S-Gl. für Gebiet 1:

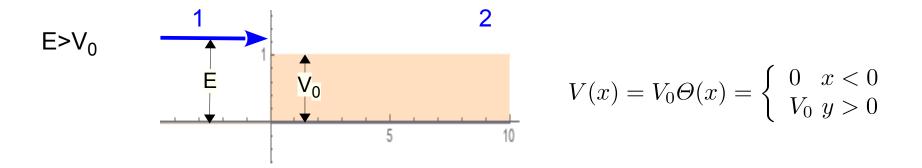
$$-\frac{\hbar^2}{2m}\frac{2}{\partial x^2}\psi(x) = E\psi(x)$$

$$\psi'' = -\frac{2mE}{\hbar^2}\psi := -k^2\psi$$

S-Gl. für Gebiet 2:

$$-\frac{\hbar^2}{2m}\frac{^2}{\partial x^2}\psi(x) = (E - V)\psi(x)$$

$$\psi'' = -\frac{2m(E - V)}{\hbar^2} \psi := -q^2 \psi$$



S-Gl. für Gebiet 1:

$$-\frac{\hbar^2}{2m}\frac{^2}{\partial x^2}\psi(x) = E\psi(x)$$

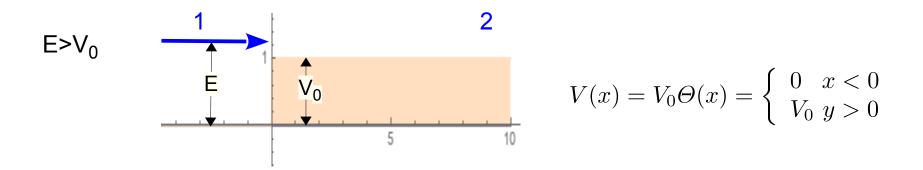
$$\psi'' = -\frac{2mE}{\hbar^2}\psi := -k^2\psi$$

S-GI. für Gebiet 2:

$$-\frac{\hbar^2}{2m}\frac{^2}{\partial x^2}\psi(x) = (E - V)\psi(x)$$

$$\psi'' = -\frac{2m(E - V)}{\hbar^2} \psi := -q^2 \psi$$

komplexe Schwingungsgleichungen mit unterschiedlichen Wellenzahlen



S-GI. für Gebiet 1:

$$-\frac{\hbar^2}{2m}\frac{^2}{\partial x^2}\psi(x) = E\psi(x)$$

$$\psi'' = -\frac{2mE}{\hbar^2}\psi := -k^2\psi$$

S-Gl. für Gebiet 2:

$$-\frac{\hbar^2}{2m}\frac{^2}{\partial x^2}\psi(x) = (E - V)\psi(x)$$

$$\psi'' = -\frac{2m(E - V)}{\hbar^2} \psi := -q^2 \psi$$

komplexe Schwingungsgleichungen mit unterschiedlichen Wellenzahlen

Ansatz:
$$\psi_1(x) = A\left(\exp(ikx) + R\exp(-ikx)\right)$$
 $\psi_1(x) = AT\exp(iqx)$

durchgehend

reflektiert

Transmission in Gebiet 2

$$\begin{array}{l}
(1) \,\psi(0) = A(1+R) \\
(2) \,\psi(0) = AT
\end{array} \right\} 1 + R = T$$

$$\begin{array}{l}
(1) \,\psi(0) = A(1+R) \\
(2) \,\psi(0) = AT
\end{array} \right\} 1 + R = T$$

$$\begin{array}{l} (1) \, \psi' = ikA \left(\exp(ikx) - R \exp(-ikx) \right) \\ (2) \, \psi' = iqAT \exp(iqx) \end{array} \right\} ik(1-R) = iqT$$

$$\begin{array}{l}
(1) \,\psi(0) = A(1+R) \\
(2) \,\psi(0) = AT
\end{array} \right\} 1 + R = T$$

$$\begin{array}{l} (1) \, \psi' = ikA \left(\exp(ikx) - R \exp(-ikx) \right) \\ (2) \, \psi' = iqAT \exp(iqx) \end{array} \right\} ik(1-R) = iqT$$

$$\Rightarrow k(1-R) = q(1+R)$$

$$\begin{array}{l}
(1) \,\psi(0) = A(1+R) \\
(2) \,\psi(0) = AT
\end{array} \right\} 1 + R = T$$

$$\begin{array}{l}
(1) \psi' = ikA \left(\exp(ikx) - R \exp(-ikx) \right) \\
(2) \psi' = iqAT \exp(iqx)
\end{array} \right\} ik(1-R) = iqT$$

$$\Rightarrow k(1-R) = q(1+R) \Leftrightarrow k-q = (k+q)R \Leftrightarrow R = \frac{k-q}{k+q}$$

$$(1) \psi' = ikA \left(\exp(ikx) - R \exp(-ikx) \right)$$

$$(2) \psi' = iqAT \exp(iqx)$$

$$ik(1-R) = iqT$$

$$\Rightarrow k(1-R) = q(1+R) \Leftrightarrow k-q = (k+q)R \Leftrightarrow R = \frac{k-q}{k+q}$$

$$\Rightarrow T = 1 + R = \frac{2k}{k+g}$$

Stetigkeit von ψ und ψ' bei x=0 :

$$(1) \psi(0) = A(1+R)
(2) \psi(0) = AT$$

$$1 + R = T$$

$$(1) \psi' = ikA \left(\exp(ikx) - R \exp(-ikx)\right)
(2) \psi' = iqAT \exp(iqx)$$

$$k(1-R) = q(1+R) \Leftrightarrow k-q = (k+q)R \Leftrightarrow R = \frac{k-q}{k+q}$$

$$\Rightarrow T = 1+R = \frac{2k}{k+q}$$

Interpretation: Wahrscheinlichkeit für Reflexion und Transmission

Stetigkeit von ψ und ψ' bei x=0 :

$$(1) \psi(0) = A(1+R) (2) \psi(0) = AT$$
 } $1 + R = T$

$$\begin{array}{l}
(1) \psi' = ikA \left(\exp(ikx) - R \exp(-ikx) \right) \\
(2) \psi' = iqAT \exp(iqx)
\end{array} \right\} ik(1-R) = iqT$$

$$\Rightarrow k(1-R) = q(1+R) \Leftrightarrow k-q = (k+q)R \Leftrightarrow R = \frac{k-q}{k+q}$$

$$\Rightarrow T = 1+R = \frac{2k}{k+q}$$

Interpretation: Wahrscheinlichkeit für Reflexion und Transmission

Reflexionskoeffizient: $r = |R|^2$

Stetigkeit von ψ und ψ' bei x=0 :

$$(1) \psi(0) = A(1+R) (2) \psi(0) = AT$$
 } 1 + R = T

$$\begin{array}{l}
(1) \psi' = ikA \left(\exp(ikx) - R \exp(-ikx) \right) \\
(2) \psi' = iqAT \exp(iqx)
\end{array} \right\} ik(1-R) = iqT$$

$$\Rightarrow k(1-R) = q(1+R) \Leftrightarrow k-q = (k+q)R \Leftrightarrow R = \frac{k-q}{k+q}$$

$$\Rightarrow T = 1+R = \frac{2k}{k+q}$$

Interpretation: Wahrscheinlichkeit für Reflexion und Transmission

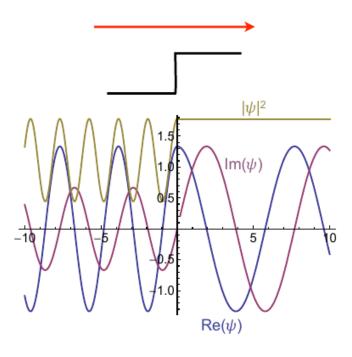
- Reflexionskoeffizient: $r = |R|^2$
- $\ \ \, \hbox{Transmissionskoeffizient:} \ \ \, t=1-r=\frac{q}{k}|T|^2$

Grafische Darstellung der Lösung

- q/k = 1/2 (Stufe hinauf) bzw. q/k = 2 (Stufe hinunter)
- Reflexionskoeffizient: *r* = 1/9, Transmissionskoeffizient: *t* = 8/9

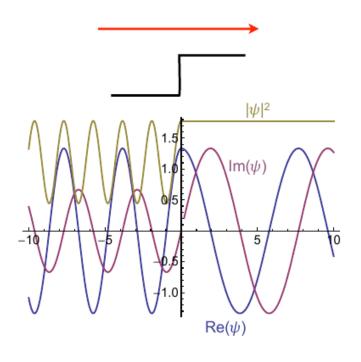
Grafische Darstellung der Lösung

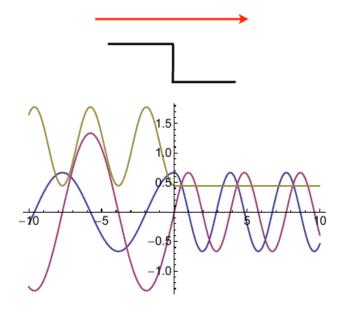
- q/k = 1/2 (Stufe hinauf) bzw. q/k = 2 (Stufe hinunter)
- Reflexionskoeffizient: r = 1/9, Transmissionskoeffizient: t = 8/9



Grafische Darstellung der Lösung

- q/k = 1/2 (Stufe hinauf) bzw. q/k = 2 (Stufe hinunter)
- Reflexionskoeffizient: r = 1/9, Transmissionskoeffizient: t = 8/9

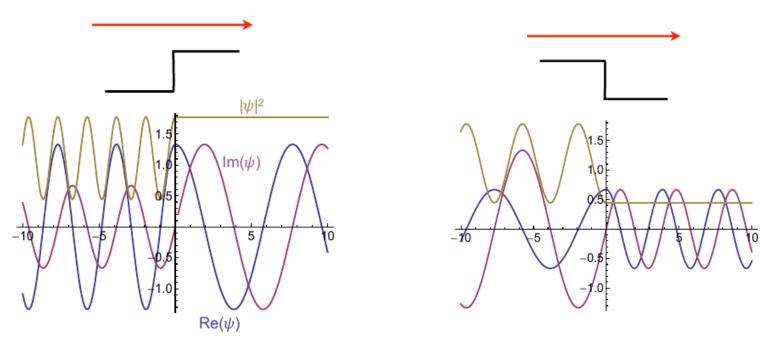




Grafische Darstellung der Lösung

Parameterwahl: $V_0 = \hbar = m = 1$; E = 4/3

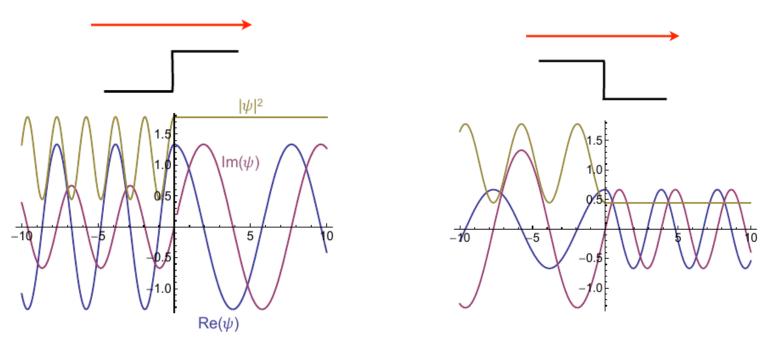
- q/k = 1/2 (Stufe hinauf) bzw. q/k = 2 (Stufe hinunter)
- Reflexionskoeffizient: *r* = 1/9, Transmissionskoeffizient: *t* = 8/9



ullet r
eq 0 Reflexion analog zu Licht an Grenze, nicht erwartet für klass. Teilchen

Grafische Darstellung der Lösung

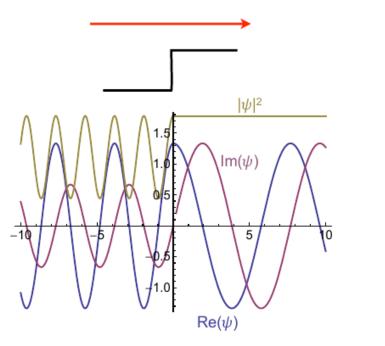
- q/k = 1/2 (Stufe hinauf) bzw. q/k = 2 (Stufe hinunter)
- Reflexionskoeffizient: r = 1/9, Transmissionskoeffizient: t = 8/9

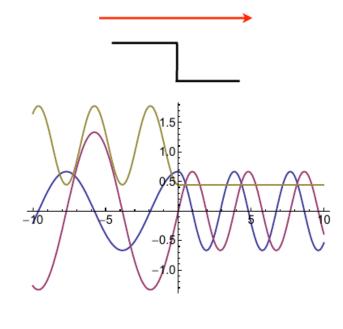


- ullet r
 eq 0 Reflexion analog zu Licht an Grenze, nicht erwartet für klass. Teilchen
- \blacksquare Änderung der Wellenzahl k > q, nicht erwartet für klass. Welle

Grafische Darstellung der Lösung

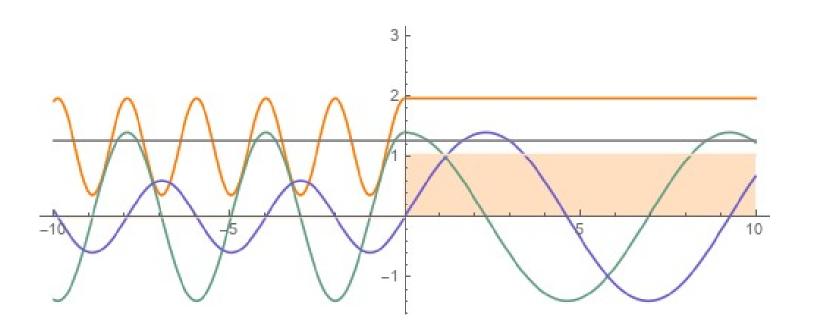
- q/k = 1/2 (Stufe hinauf) bzw. q/k = 2 (Stufe hinunter)
- Reflexionskoeffizient: r = 1/9, Transmissionskoeffizient: t = 8/9





- $m{r}
 eq 0$ Reflexion analog zu Licht an Grenze, nicht erwartet für klass. Teilchen
- \blacksquare Änderung der Wellenzahl k > q, nicht erwartet für klass. Welle
- ullet $r \propto (k-q)^2$ unabhängig von Laufrichtung der Welle

Zum Ausprobieren: Simulation mit Mathematica

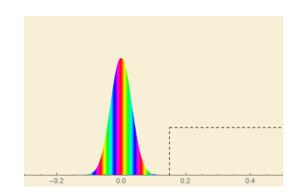


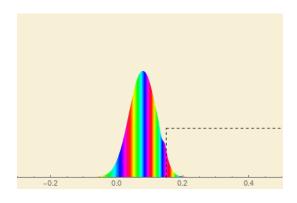
Wellenpaket an der Potentialstufe

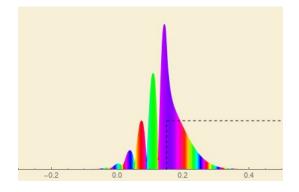
Animiertes Wellenpaket mit $E>V_0$ an der Potentialstufe

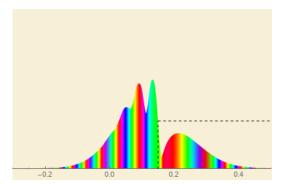
Link: Staatsexamensarbeit J. Rosenkranz, Karlsruhe (2013)

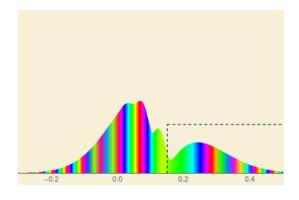
Lösung der zeitabhängigen S-Gl. mit Mathematica

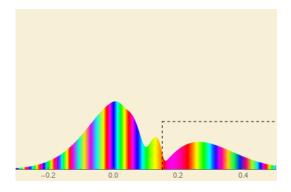


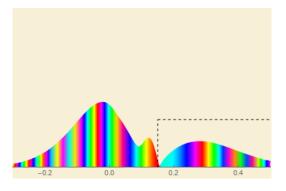


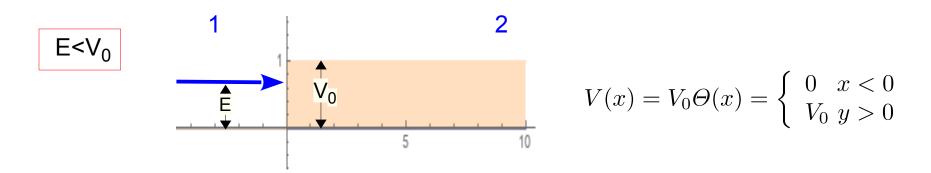








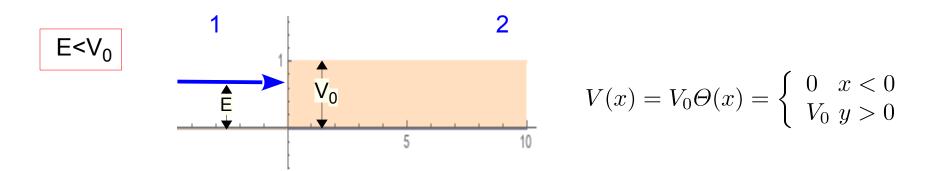




S-Gl. für Gebiet 1 wie eben:

$$-\frac{\hbar^2}{2m}\frac{^2}{\partial x^2}\psi(x)=E\psi(x)$$

$$\psi''=-\frac{2mE}{\hbar^2}\psi:=-k^2\psi$$
 Ansatz:
$$\psi_1(x)=A\left(\exp(ikx)+R\exp(-ikx)\right)$$
 durchgehend reflektiert



S-Gl. für Gebiet 1 wie eben:

$$-\frac{\hbar^2}{2m}\frac{^2}{\partial x^2}\psi(x)=E\psi(x)$$

$$\psi''=-\frac{2mE}{\hbar^2}\psi:=-k^2\psi$$
 Ansatz:
$$\psi_1(x)=A\left(\exp(ikx)+R\exp(-ikx)\right)$$

durchgehend reflektiert

S-Gl. für Gebiet 2:

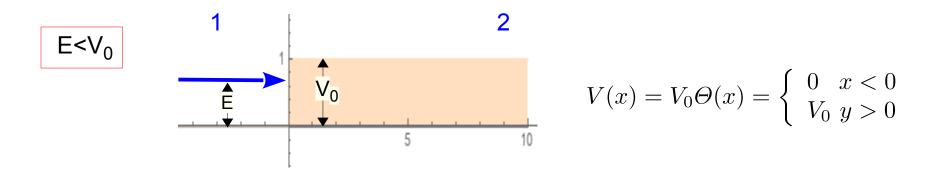
$$-\frac{\hbar^2}{2m}\frac{2}{\partial x^2}\psi(x) = (E - V)\psi(x)$$

$$\psi'' = -\frac{2m(E - V)}{\hbar^2} \psi := \kappa^2 \psi$$

Ansatz:

$$\psi_1(x) = AT \exp(\kappa x)$$

Dämpfung in Gebiet 2



S-Gl. für Gebiet 1 wie eben:

$$-\frac{\hbar^2}{2m}\frac{^2}{\partial x^2}\psi(x) = E\psi(x)$$

$$\psi'' = -\frac{2mE}{\hbar^2}\psi := -k^2\psi$$
 Ansatz:
$$\psi_1(x) = A\left(\exp(ikx) + R\exp(-ikx)\right)$$
 durchgehend reflektiert

S-Gl. für Gebiet 2:

$$-\frac{\hbar^2}{2m}\frac{2}{\partial x^2}\psi(x) = (E - V)\psi(x)$$

$$\psi'' = -\frac{2m(E - V)}{\hbar^2} \psi := \kappa^2 \psi$$

Ansatz:

$$\psi_1(x) = AT \exp(\kappa x)$$

Dämpfung in Gebiet 2

Lösungen der Stetigkeitsbedinungen:

$$R = \frac{k - i\kappa}{k + i\kappa} \rightarrow r = |R|^2 = R^*R = 1$$
 immer vollständige Reflexion!

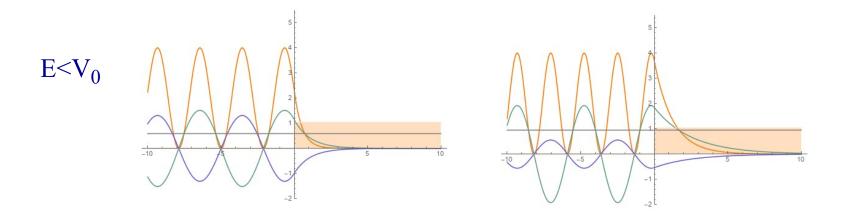
$$T=rac{2k}{k+i\kappa} \quad o \ t=rac{i\kappa}{k}|T|^2=irac{4k\kappa}{k^2+\kappa^2}
eq 0$$
 rein imaginär, kein Teilchenstrom!

Wellenfunktion dringt um Länge $\frac{1}{\kappa}$

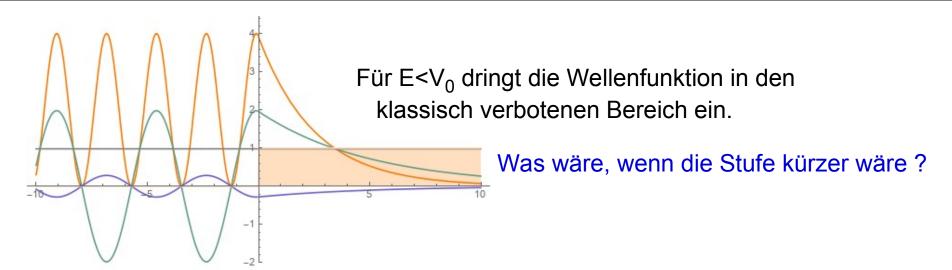
in klassisch verbotenen Bereich ein ($\psi \propto \exp(-\kappa x)$)

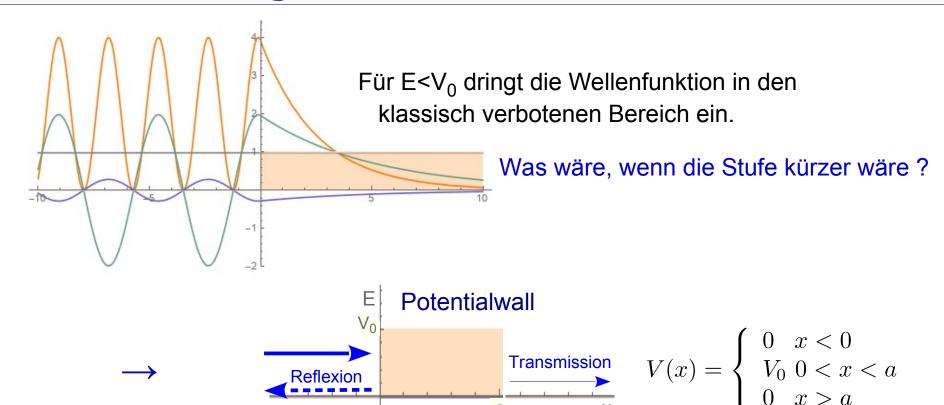
Wellenfunktion dringt um Länge $\frac{1}{\kappa}$

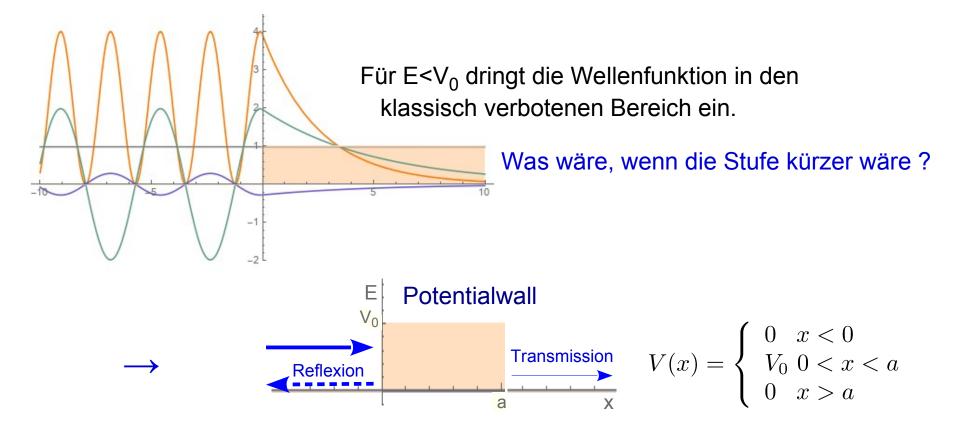
in klassisch verbotenen Bereich ein ($\psi \propto \exp(-\kappa x)$)



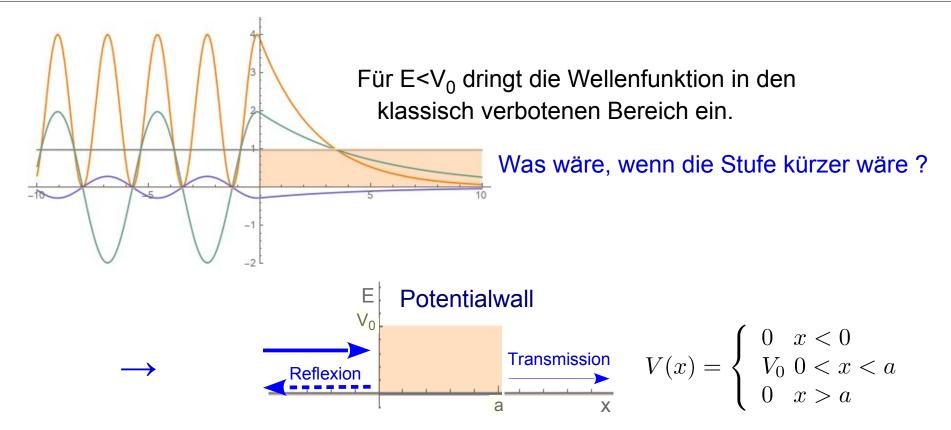
Für $E < V_0$ wird der gesamte Strom reflektiert, die Wellenfunktion dringt aber – exponentiell abfallend - in den klassisch verbotenen Bereich ein !







Ansätze mittlerweile offensichtlich :
$$\psi(x) = \left\{ \begin{array}{ll} A \exp(ikx) + B \exp(-ikx) & x < 0 \\ C \exp(-\kappa x) + D \exp(\kappa x) & 0 < x < a \\ F \exp(ikx) + G \exp(-ikx) & x > a \end{array} \right.$$



Ansätze mittlerweile offensichtlich :
$$\psi(x) = \left\{ \begin{array}{ll} A \exp(ikx) + B \exp(-ikx) & x < 0 \\ C \exp(-\kappa x) + D \exp(\kappa x) & 0 < x < a \\ F \exp(ikx) + G \exp(-ikx) & x > a \end{array} \right.$$

6 Parameter an zwei Grenzen zu bestimmen → längere Rechnung

Quantenteilchen am Potentialwall: Tunneleffekt

Ergebnis:

Transmissionskoeffizient
$$t=\frac{|F|^2}{|A|^2}=\frac{1}{1+\frac{V_0^2}{4E(V_0-E)}\sinh^2(\kappa a)}\propto \exp(-\kappa a)$$
 für $\kappa a>>1$

Ergebnis:

Transmissionskoeffizient
$$t=\frac{|F|^2}{|A|^2}=\frac{1}{1+\frac{V_0^2}{4E(V_0-E)}\sinh^2(\kappa a)}\propto \exp(-\kappa a)$$
 für $\kappa a >>1$

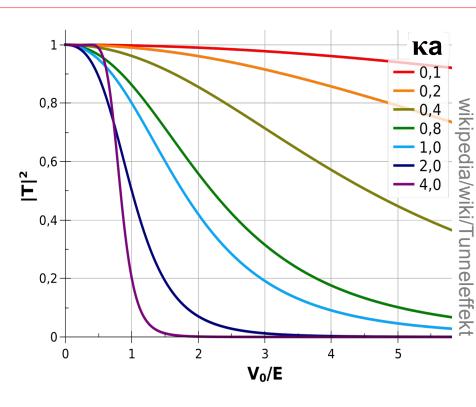
Quantenteilchen "tunneln" durch klassisch unüberwindbare Potentialbarrieren!

Quantenteilchen am Potentialwall: Tunneleffekt

Ergebnis:

Transmissionskoeffizient
$$t=\frac{|F|^2}{|A|^2}=\frac{1}{1+\frac{V_0^2}{4E(V_0-E)}\sinh^2(\kappa a)}\propto \exp(-\kappa a)$$
 für $\kappa a>>1$

Quantenteilchen "tunneln" durch klassisch unüberwindbare Potentialbarrieren!



Quantenteilchen am Potentialwall: Tunneleffekt

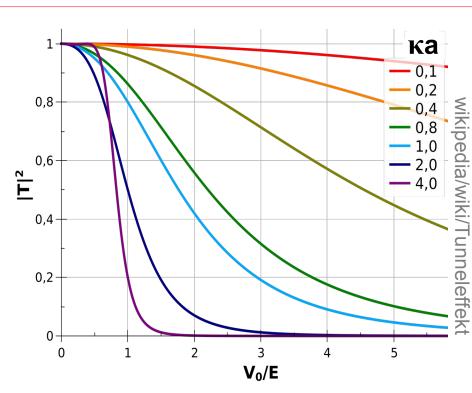
Ergebnis:

Transmissionskoeffizient
$$t=\frac{|F|^2}{|A|^2}=\frac{1}{1+\frac{V_0^2}{4E(V_0-E)}\sinh^2(\kappa a)}\propto \exp(-\kappa a)$$
 für $\kappa a>>1$

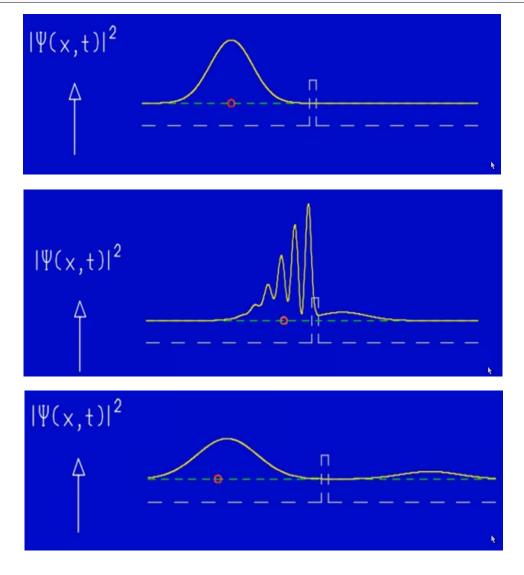
Quantenteilchen "tunneln" durch klassisch unüberwindbare Potentialbarrieren!

Tunneleffekt Hat wichtige Bedeutung für Physik und Technik:

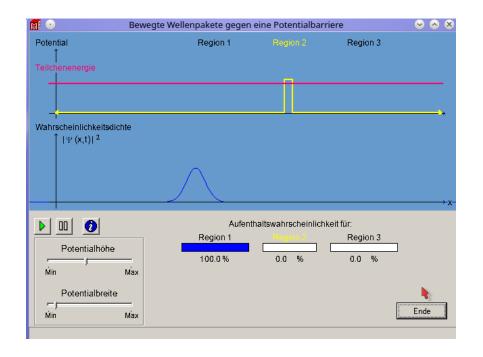
- Kernzerfälle, Kernfusion
- Chemische Reaktionen
- Molekulare Übergänge (z.B. NH₃-Molekül)
- Supraleitung
- Elektronische Bauteile ("Tunneldiode")
- Rastertunnelmikroskop
- Leseköpfe in modernen Festplatten
- Flash-Speicher



Grafische Darstellung mit Wellenpaketen

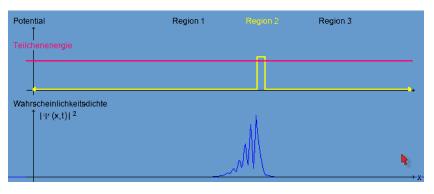


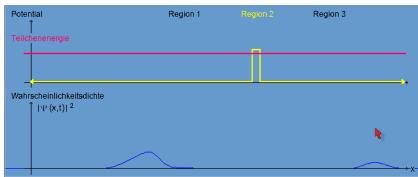
Tunneleffekt mit Wellenpaket



Windows-Programm **Alea** (1998), erlaubt Einstellung der Parameter über Schieberegler

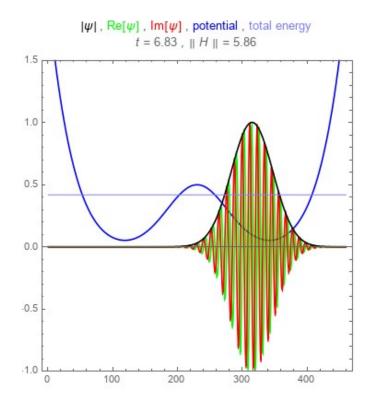
Leider nicht mehr verfügbar (Entwicklung Uni. Mainz, Vertrieb Klett Verlag).

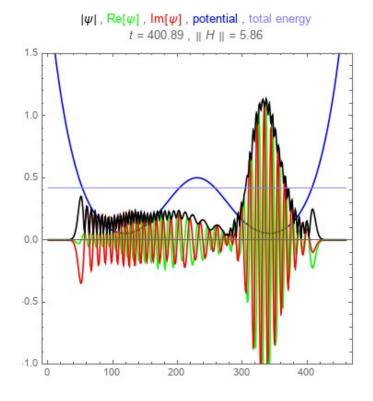




Computersimulation: Tunneleffekt

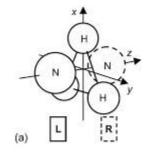
Simulation mit Mathematica

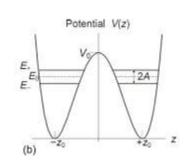




Konkretes Beispiel NH₃:

Stickstoffatom tunnelt mit einer Frequenz von ~2 GHz zwischen der linken und rechten Position



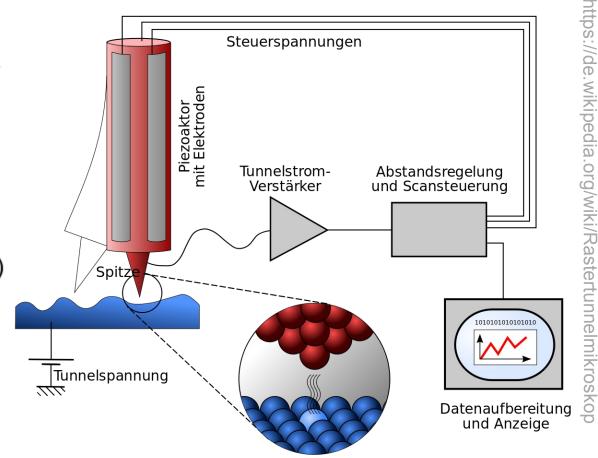


researchgate.net

Anwendung: Rastertunnelmikroskop

Rastertunnelmikroskop: engl.: STM = scanning tunneling microscope (G. Binnig, H. Rohrer, 1979)

- Abtasten von Probenoberflächen mit sehr feiner Spitze (1 Atom!)
- Elektronen tunneln von Spitze zu Oberfläche
- Konstanter Abstand zur Oberfläche → konstanter Tunnelstrom I_T (pA bis nA)



Ende VL 08

und Zeit für Fragen?

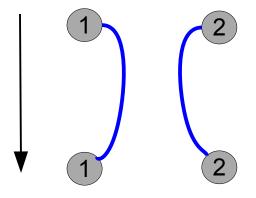
Prinzip: Quantenteilchen der gleichen Sorte sind ununterscheidbar.

Prinzip: Quantenteilchen der gleichen Sorte sind ununterscheidbar.

Betrachten zwei gleiche Teilchen, die sich von oben nach unten bewegen:

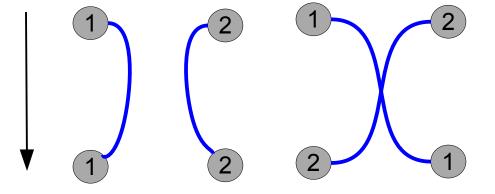
Prinzip: Quantenteilchen der gleichen Sorte sind ununterscheidbar.

Betrachten zwei gleiche Teilchen, die sich von oben nach unten bewegen:



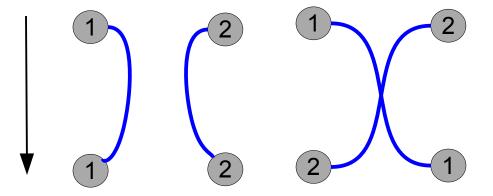
Prinzip: Quantenteilchen der gleichen Sorte sind ununterscheidbar.

Betrachten zwei gleiche Teilchen, die sich von oben nach unten bewegen:



Prinzip: Quantenteilchen der gleichen Sorte sind ununterscheidbar.

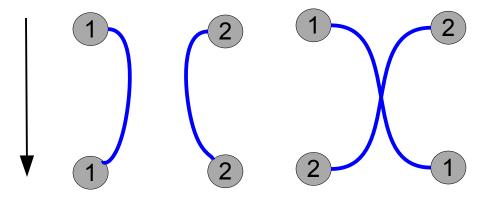
Betrachten zwei gleiche Teilchen, die sich von oben nach unten bewegen:

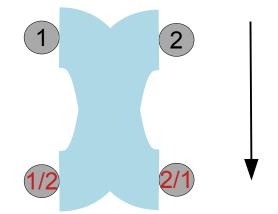


In der **klassischen Physik** erlaubt die Verfolgung der Teilchenbahnen, zu entscheiden, ob Teilchen 1 links oder rechts angekommen ist.

Prinzip: Quantenteilchen der gleichen Sorte sind ununterscheidbar.

Betrachten zwei gleiche Teilchen, die sich von oben nach unten bewegen:

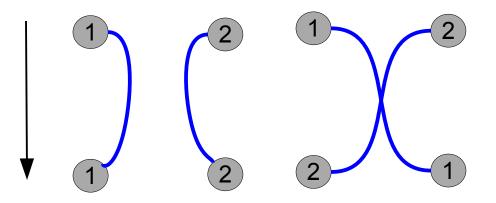




In der **klassischen Physik** erlaubt die Verfolgung der Teilchenbahnen, zu entscheiden, ob Teilchen 1 links oder rechts angekommen ist.

Prinzip: Quantenteilchen der gleichen Sorte sind ununterscheidbar.

Betrachten zwei gleiche Teilchen, die sich von oben nach unten bewegen:



1 2 2/1

In der **klassischen Physik** erlaubt die Verfolgung der Teilchenbahnen, zu entscheiden, ob Teilchen 1 links oder rechts angekommen ist.

In der **Quantenphysik** sind die Bahnen verschmiert; es ist nicht zu entscheiden, wo sich Teilchen (1) bzw. (2) am Ende befinden.

Zwei Teilchen im Kasten

Beispiel:

zwei nicht miteinander wechselwirkende Teilchen im Kasten, beschrieben durch eine gemeinsame Wellenfunktion $\psi(x_1,x_2,t)$

Stationäre S-GI.

$$\left\{ -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial^2 x_1^2} + \frac{\partial^2}{\partial^2 x_2^2} \right) + V(x_1, x_2) \right\} \psi(x_1, x_2) = E\psi(x_1, x_2)$$

mit V=0 im Kasten; Produktansatz $\psi(x_1,x_2)=\psi_1(x_1)\cdot\psi_2(x_2)$

$$\Rightarrow \psi_{n,m}(x_1, x_2) = \psi_n(x_1)\psi_m(x_2)$$

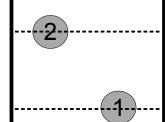
z.B.
$$\psi_{1,2} = A \sin(\frac{\pi x_1}{l}) \sin(\frac{2\pi x_2}{l})$$

Teilchen 1 im Zustand 1, Teilchen 2 im Zustand 2,

$$\langle x_1 \rangle = \int x_1 \psi_{1,2}(x_1, x_2) dx_1 dx_2 = \int x_1 \psi_1(x_1) dx_1$$

$$\langle x_2 \rangle = \int x_2 \psi_{1,2}(x_1, x_2) dx_1 dx_2 = \int x_2 \psi_2(x_1) dx_2$$

d.h. die Teilchen sind unterscheidbar!



Zwei Teilchen im Kasten (2)

Ununterscheidbar bedeutet:

$$|\psi(x_1,x_2)|^2=|\psi(x_2,x_1)|^2$$
 d.h. kein Unterschied bei Teilchenaustausch $\psi(x_1,x_2)\,\mathrm{und}\,\psi(x_2,x_1)$ dürften aber unterschiedlich sein !

Erinnerung: Die Schrödingergleichung ist eine lineare DGL

→ Linearkombenaten haust Lösungen

Bilden also Linearkombinationen, die $|\psi_{n,m}(x_{\underline{1}},x_2)|^2=|\psi_{n,m}(x_{\underline{2}},x_1)|^2$ erfüllen zwei Möglichkeiten:

1.)
$$\psi_{n,m}^S(x_1,x_2) = A(\psi_n(x_1)\psi_m(x_2) + \psi_n(x_2)\psi_m(x_1))$$

2.)
$$\psi_{n,m}^A(x_1,x_2) = A(\psi_n(x_1)\psi_m(x_2) - \psi_n(x_2)\psi_m(x_1))$$

$$\psi^S(x_1,x_2)=+\psi^S(x_2,x_1)$$
 symmetrisch bei Teil $\psi^A(x_1,x_2)=-\psi^A(x_2,x_1)$ antisymmetrisch

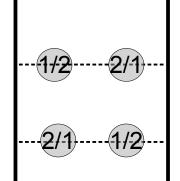
bei Teilchenaustausch

Zwei Teilchen im Kasten und Pauli-Prinzip

bemerkenswert: $\psi_{n,n}^A(x_1,x_2)=0$

Zwei Teilchen, die durch eine bei Teilchenaustausch asymmetrische Wellenfunktion beschrieben werden, können nicht im gleichen Zustand sein!

Pauli-Prinzip!



Tatsächlich gibt es in der Natur zwei Sorten Teilchen:

Bosonen haben symmetrische Wellenfunktionen

z.B. Photon, manche Atomkerne

Fermionen haben asymmetrische Wellenfunktionen,

d.h. für sie gilt das Pauli-Prinzip

z.B. Elektron, Proton, Neutron, manche Atomkerne, Quarks, ...

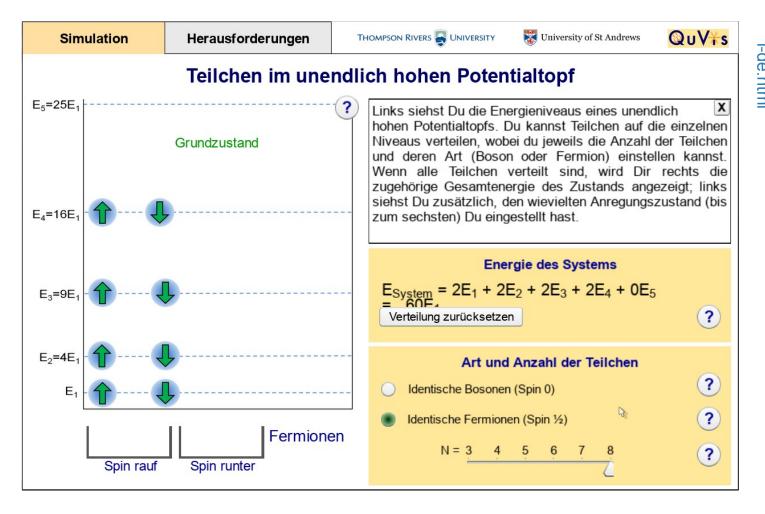
Anmerkung: hängt vom "Spin" (= Eigendrehimpuls) der Teilchen ab

ganzzahlig: 0, 1, 2, ... \rightarrow Boson

halbzahlig: ½, 1½, 2½ ... → Fermion

die unter Teilchenaustausch antisymmetrische Wellenfunktion

hat wichtige Konsequenzen in Vielteilchensystemen (→ später)



https://www.st-andrews.ac.uk/physics/quvis/de/simulations/sims/particles-infwell-de/particles-infwell-de.html

Ende VL08

und Zeit für Fragen?