

Diese Veranstaltung wir aufgezeichnet und als Medien-Cast über KIT - ILIAS bereit gestellt

Nur zur KIT-internen vorlesungsbegleitenden Nutzung, Weitergabe & anderweitige Verwendung ist untersagt

Vorlesung 13 Moderne Physik (L)

Wechselwirkung von Licht mit Materie

Kurze Zusammenfassung

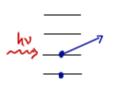
Heliumatom:

- Näherung: ein Elektron schirmt Kernladung teilweise gegen anderes ab
- Elektronenspins: separate Singulett- und Triplettzustände
- Gesamtwellenfunktion $\psi = \psi_{Ort} \cdot \psi_{Spin}$ antisymmetrisch

Periodensystem der Elemente:

- Schalenmodell des Atoms: sukzessives Auffüllen von Quantenzuständen der Atomhülle mit Elektronen
- Regeln zum Auffüllen: minimale Gesamtenergie und Pauli-Prinzip
 - → Hund'sche Regeln
- Physikalische Eigenschaften:
 - Ionisierungsenergie (maximal für voll besetzte Schalen),
 - Atomvolumen (Sprung bei Beginn einer neuen Schale)
- Chemische Eigenschaften
 - z. B. Alkalimetalle, Halogene, Edelgase

Inhaltsübersicht VL Moderne Physik

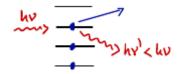

- 1) Einführung
- 2) Wiederholung wichtiger Konzepte der klassischen Physik
- 3) Spezielle Relativitätstheorie
- 4) Schlüsselexperimente und Grundlagen der Quantenphysik
- 5) Die Schrödingergleichung
- 6) Anwendungen der Schrödingergleichung
- 7) Das Wasserstoff-Atom
- 8) Atome mit mehreren Elektronen
- 9) Wechselwirkung von Licht und Materie
- 10) Grundlagen der Festkörperphysik
- 11) Kern- und Teilchenphysik
- 12) Ausblick

Licht und Materie

Erinnerung

Einige Wechselwirkungen von Licht mit Materie hatten wir bereits kennen gelernt:

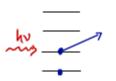
Photoeffekt: Ionisation von Atomen durch Licht
 Energie h·v des Photons wird auf ein Elektron übertragen



Emission von Photonen: Spektrallinien, Franck-Hertz-Versuch,
 Charakteristische Röntgenstrahlung

Elektron im angeregten Zustand E_a wechselt in einen niedrigeren E_e und strahlt dabei ein Photon der Energie $h \cdot v = E_a - E_e$ ab

 Comptoneffekt: Photon überträgt Energie und Impuls auf ein (freies) Elektron; Elektron und Photon werden gestreut, wobei sich die Wellenlänge des Photons ändert

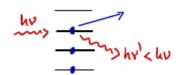


Licht und Materie

Erinnerung

Einige Wechselwirkungen von Licht mit Materie hatten wir bereits kennen gelernt:

Photoeffekt: Ionisation von Atomen durch Licht
 Energie h·v des Photons wird auf ein Elektron übertragen



Emission von Photonen: Spektrallinien, Franck-Hertz-Versuch,
 Charakteristische Röntgenstrahlung

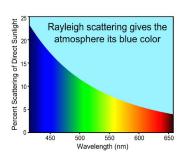
Elektron im angeregten Zustand E_a wechselt in einen niedrigeren E_e und strahlt dabei ein Photon der Energie $h \cdot v = E_a - E_e$ ab

 Comptoneffekt: Photon überträgt Energie und Impuls auf ein (freies) Elektron; Elektron und Photon werden gestreut, wobei sich die Wellenlänge des Photons ändert

Genereller Prozess:

Wechselwirkung eines Photons mit Quantenzuständen im Atom; bei diesen Prozessen werden Photonen vernichtet oder erzeugt

klassisch Lorentz-Mie-Streuung von Licht an (sphärischen) Partikeln, deren Größe der Wellenlänge des Lichts entspricht


klassisch Lorentz-Mie-Streuung von Licht an (sphärischen) Partikeln, deren Größe der Wellenlänge des Lichts entspricht

1.) **Rayleigh-Streuung**: elastische Streuung an Partikeln, die klein gegen die Wellenlänge des Lichts sind, d.h. kein Energieübertrag

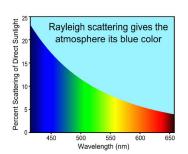
klassisch: elektromagnetische Welle regt Atom zu Schwingungen an

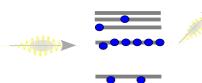
- → Dipol-Abstrahlung einer elektromagnetischen Welle
 - Intensität: $I \propto \nu^4$ d.h. mehr Streuung von blauem Licht erklärt Blau des Himmels, Morgen- / Abendrot, Polarisation des gestreuten Lichts

klassisch Lorentz-Mie-Streuung von Licht an (sphärischen) Partikeln, deren Größe der Wellenlänge des Lichts entspricht

1.) **Rayleigh-Streuung**: elastische Streuung an Partikeln, die klein gegen die Wellenlänge des Lichts sind, d.h. kein Energieübertrag

klassisch: elektromagnetische Welle regt Atom zu Schwingungen an


- → Dipol-Abstrahlung einer elektromagnetischen Welle
 - Intensität: $I \propto \nu^4$

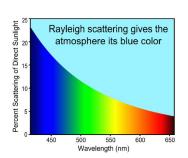

d.h. mehr Streuung von blauem Licht erklärt Blau des Himmels, Morgen- / Abendrot, Polarisation des gestreuten Lichts

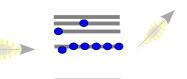
quantenmechanisch:

elastische Streuung (d.h. ohne Energieübertrag) am gesamten Atom und ohne Energieübertrag auf ein einzelnes Elektron oder das Atom:

Wirkungsquerschnitt $\sigma_{\mathrm{Reileigh}} \propto \omega^4$

klassisch Lorentz-Mie-Streuung von Licht an (sphärischen) Partikeln, deren Größe der Wellenlänge des Lichts entspricht

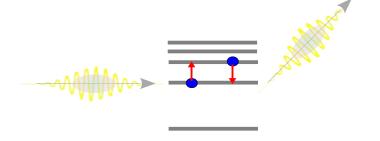



- 1.) **Rayleigh-Streuung**: elastische Streuung an Partikeln, die klein gegen die Wellenlänge des Lichts sind, d.h. kein Energieübertrag
 - klassisch: elektromagnetische Welle regt Atom zu Schwingungen an
 - → Dipol-Abstrahlung einer elektromagnetischen Welle
 - Intensität: $I \propto \nu^4$
 - d.h. mehr Streuung von blauem Licht erklärt Blau des Himmels, Morgen- / Abendrot, Polarisation des gestreuten Lichts

quantenmechanisch:

elastische Streuung (d.h. ohne Energieübertrag) am gesamten Atom und ohne Energieübertrag auf ein einzelnes Elektron oder das Atom:

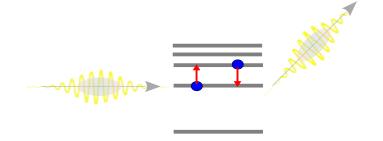
Wirkungsquerschnitt $\sigma_{
m Reileigh} \propto \omega^4$


Anmerkung: (intensives) Licht ist eine kohärente Überlagerung vieler Photonen

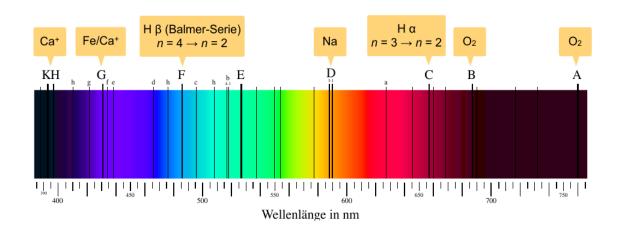
→ Interferenzeffekte der gestreuten Photonen wichtig!

9.2 Resonanz-Absorption und -Emission

a) Resonanzabsorption:

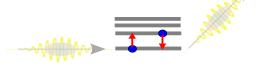

- Photon-Energie =Differenz zwischen Energieniveaus
- Emission- und Absorptionslinie charakteristisch für Atome

9.2 Resonanz-Absorption und -Emission


a) Resonanzabsorption:

- Photon-Energie =Differenz zwischen Energieniveaus
- Emission- und Absorptionslinie charakteristisch für Atome

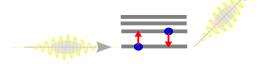
→ Charakteristische Linien im Spektrum, Grundlage der Spektroskopie


z.B. Fraunhofer-Linien im Sonnenlicht

Saperaud, Fraunhofer_lines_DE.svg

Resonanz-Absorption und - Emission (2)

a) Resonanzabsorption(2):



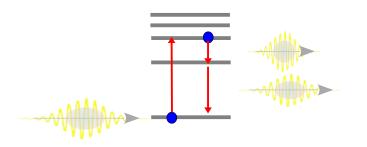
oder: Resonanzabsorption durch Gase in der Photosphäre von Sternen

→ erlaubt Rückschlüsse auf chemische Zusammensetzung und Temperatur sowie die von der Strahlung durchquerte Materie

Resonanz-Absorption und - Emission (2)

a) Resonanzabsorption(2):

oder: Resonanzabsorption durch Gase in der Photosphäre von Sternen

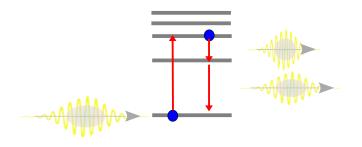

→ erlaubt Rückschlüsse auf chemische Zusammensetzung und Temperatur sowie die von der Strahlung durchquerte Materie

Wasserstoff Lyman-Alpha-Linie: Übergang $n = 2 \rightarrow n = 1$, $\lambda_0 = 121.6$ nm Gaswolken (Wasserstoff) Sie (in den Himmel guckend) Quasar (Aktiver galaktischer **Große Entfernung** (Mrd. Lichtjahre) Kern mit energetischen Teilchenjets) Erde **Enferntes Objekt** Intensität Intensität ntensität Weiter rotverschobenes Leicht rotverschobenes Spektrum am Ort der Quelle Spektrum +Absorption Spektrum + Absorption

Absorption und Emission: Fluoreszenz

b) Fluoreszenz:

 Resonanz-Absorption, gefolgt von mehrstufigem Übergang in den Grundzustand; führt zu Leuchten bei kleinerer Frequenz



→ Schwarzlichtlampe, Weißmacher in Waschmitteln, UV-Untersuchung von Mineralien, UV-Signatur bei Gelscheinen, ...

Absorption und Emission: Fluoreszenz

b) Fluoreszenz:

 Resonanz-Absorption, gefolgt von mehrstufigem Übergang in den Grundzustand; führt zu Leuchten bei kleinerer Frequenz

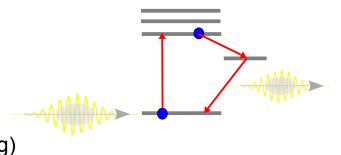
→ Schwarzlichtlampe, Weißmacher in Waschmitteln, UV-Untersuchung von Mineralien, UV-Signatur bei Gelscheinen, ...

Beispiel: Zinksilikat (Zn2SiO4) = "Willemit"

→ grüne Fluoreszenz unter UV-Licht

Tageslicht

UV-Licht

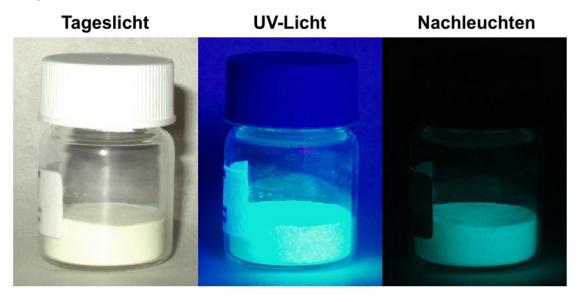


Absorption und Emission: Phosphoreszenz

b) Phosphoreszenz:

- Anregung in höheren Zustand;
 - Auswahlregeln für Drehimpuls unterdrücken direkten Übergang
 - strahlungsloser Übergang in Zwischenzustand (durch Stoß oder Anregung einer Molekülschwingung)
 - → Charakteristisches Nachleuchten

Anwendungen: Zifferblätter von Uhren, diverse "Leuchtfarben"

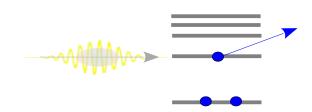

Absorption und Emission: Phosphoreszenz

b) Phosphoreszenz:

- Anregung in höheren Zustand;
 - Auswahlregeln für Drehimpuls unterdrücken direkten Übergang
 - strahlungsloser Übergang in Zwischenzustand (durch Stoß oder Anregung einer Molekülschwingung)
 - → Charakteristisches Nachleuchten

Anwendungen: Zifferblätter von Uhren, diverse "Leuchtfarben"

Beispiel: Europium-dotiertes Strontiumaluminat (SrAl2O4)


Splarka, Phosphorescent.jpg

Ionisation oder "Herrausschlagen" von Elektronen aus dem Atom

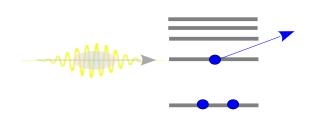
a) Photoeffekt:

schon ausführlich diskutiert:

- Elektron wird ausgelöst,
- Photon vernichtet

- inneres Elektron wird ausgelöst,
- Photon vernichtet
- Elektron aus oberer Schale füllt Lücke
- → Emission eines Photons fester Frequenz

Nomenklatur:

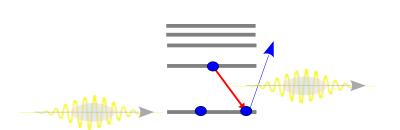

- K_{α} : L \rightarrow K-Schale
- $K_\beta:M\to K\text{-Schale}$

Ionisation oder "Herrausschlagen" von Elektronen aus dem Atom

a) Photoeffekt:

schon ausführlich diskutiert:

- Elektron wird ausgelöst,
- Photon vernichtet



a) Charakteristische Röntgenstrahlung:

- inneres Elektron wird ausgelöst,
- Photon vernichtet
- Elektron aus oberer Schale füllt Lücke
- → Emission eines Photons fester Frequenz

Nomenklatur:

- K_{α} : L \rightarrow K-Schale
- $K_{\beta}:M\to K\text{-Schale}$

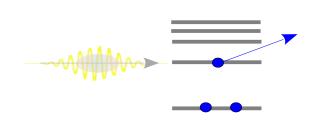
Ionisation

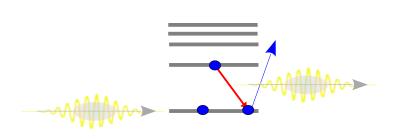
Ionisation oder "Herrausschlagen" von Elektronen aus dem Atom

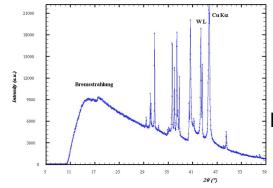
a) Photoeffekt:

schon ausführlich diskutiert:

- Elektron wird ausgelöst,
- Photon vernichtet



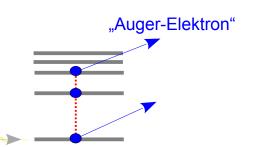

- inneres Elektron wird ausgelöst,
- Photon vernichtet
- Elektron aus oberer Schale füllt Lücke
- → Emission eines Photons fester Frequenz



- K_{α} : L \rightarrow K-Schale
- $K_{\beta}: M \to K\text{-Schale}$

Anwendungen: Röntgenfloreszenz-Analyse

Röntgenspektrum einer Cu-Anode


(wikipedia.org)

Ionisation (2)

Ionisation oder "Herrausschlagen" von Elektronen aus dem Atom

- c) Auger-Effekt (auch "Auger-Meitner-Effekt"):
- strahlungsloser Energieübertrag auf Hüllenelektron, das statt eines Photons emittiert wird

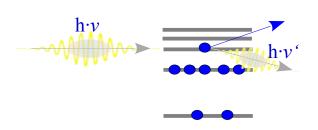
Anwendungen: Auger-Spektroskopie

"Auger-Elektron"

Ionisation (2)

Ionisation oder "Herrausschlagen" von Elektronen aus dem Atom

c) Auger-Effekt (auch "Auger-Meitner-Effekt"):


 strahlungsloser Energieübertrag auf Hüllenelektron, das statt eines Photons emittiert wird

Anwendungen: Auger-Spektroskopie

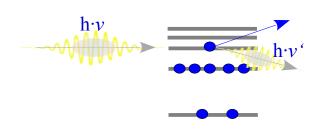
bereits ausführlich diskutiert

 inelastische Photon-Streuung an (quasi-)freiem Elektron

"Auger-Elektron"

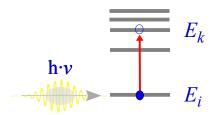
Ionisation (2)

Ionisation oder "Herrausschlagen" von Elektronen aus dem Atom


- c) Auger-Effekt (auch "Auger-Meitner-Effekt"):
- strahlungsloser Energieübertrag auf Hüllenelektron, das statt eines Photons emittiert wird

Anwendungen: Auger-Spektroskopie

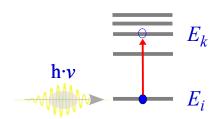
bereits ausführlich diskutiert

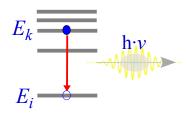

 inelastische Photon-Streuung an (quasi-)freiem Elektron

Anmerkung: wir werden noch erkennen (s. "Teilchenphysik"), dass auch in der Compton-Streuung das ursprüngliche Photon vernichtet und ein neues abgestrahlt wird

Übergänge zwischen Energieniveaus in Atomen

- a) Absorption eines Photons:
 - Photon vernichtet
 - Elektron im angeregten Zustand

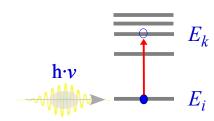


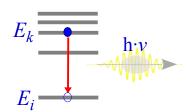

Übergänge zwischen Energieniveaus in Atomen

- a) Absorption eines Photons:
 - Photon vernichtet
 - Elektron im angeregten Zustand

b) spontane Emission eines Photons:

- Elektron geht aus angeregtem in einen niederen Zustand
- Erzeugung eines Photons

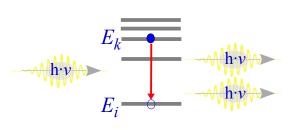



Übergänge zwischen Energieniveaus in Atomen

- a) Absorption eines Photons:
 - Photon vernichtet
 - Elektron im angeregten Zustand

b) spontane Emission eines Photons:

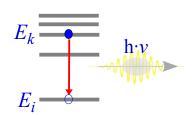
- Elektron geht aus angeregtem in einen niederen Zustand
- Erzeugung eines Photons



c) stimulierte Emission eines Photons:

- Photon-Emission durch äußeres
 Strahlungsfeld "stimuliert"
- emittiertes Photon ist "kohärent" zu einfallendem Photon:

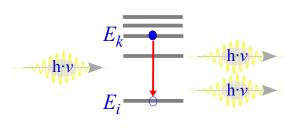
gleiche Richtung, Phase, Frequenz, Polarisation


Übergänge zwischen Energieniveaus in Atomen

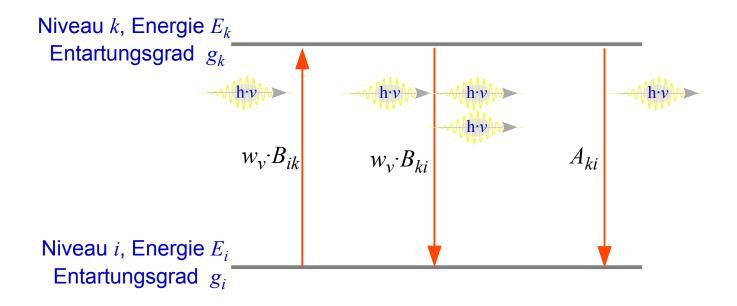
- a) Absorption eines Photons:
 - Photon vernichtet
 - Elektron im angeregten Zustand

b) spontane Emission eines Photons:

- Elektron geht aus angeregtem in einen niederen Zustand
- Erzeugung eines Photons



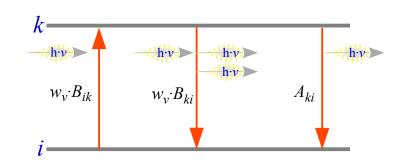
c) stimulierte Emission eines Photons:


- Photon-Emission durch äußeres
 Strahlungsfeld "stimuliert"
- emittiertes Photon ist "kohärent" zu einfallendem Photon:

gleiche Richtung, Phase, Frequenz, Polarisation

Tieferes Verständnis: QED – Quantisierung des Strahlungsfeldes

Absorption und Emission von Photonen im Strahlungsfeld

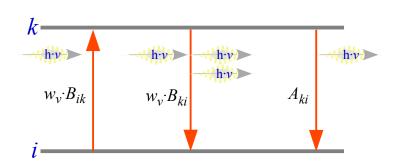

Photondichte im Strahlungsfeld

 $\begin{cases} B_{ik} & \text{Anregung durch Photonabsorption} \\ A_{ki} & \text{spontane Photonemission} \\ B_{ik} & \text{stimulierte Photonemission} \end{cases}$

Übergangswahrscheinlichkeiten:
$$\left\{ \begin{array}{l} W_{ik} = w_{\nu} \cdot B_{ik} \\ W_{ki} = A_{ki} + w_{\nu} \cdot B_{ki} \end{array} \right.$$

Im Gleichgewicht:

- $-N_k$ Atome im Zustand k
- $-N_i$ Atome im Zustand i
- Übergangsraten i→k und k→i müssen gleich sein:


(1)
$$N_k \cdot (A_{ki} + w_{\nu} B_{ki}) = N_i \cdot w_{\nu} B_{ik}$$

Bei hohen Photondichten kann der Faktor A_{ki} nicht für Gleichgewicht sorgen!

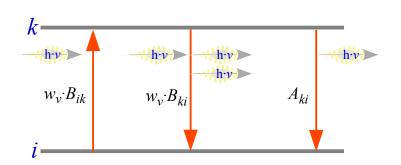
 \rightarrow B_{ik} kann nicht Null sein \rightarrow es muss stimulierte Emission geben!

Im Gleichgewicht:

- $-N_k$ Atome im Zustand k
- $-N_i$ Atome im Zustand i
- Übergangsraten i→k und k→i müssen gleich sein:

(1)
$$N_k \cdot (A_{ki} + w_{\nu} B_{ki}) = N_i \cdot w_{\nu} B_{ik}$$

Bei hohen Photondichten kann der Faktor A_{ki} nicht für Gleichgewicht sorgen!


 \rightarrow B_{ik} kann nicht Null sein \rightarrow es muss stimulierte Emission geben!

Im Gleichgewicht mit <u>thermischen Strahlungsfeld</u> sind die Zahlen N_k und N_i durch den **Boltzmann-Faktor** gegeben:

(2)
$$\frac{N_k}{N_i} = \frac{g_k}{g_i} \exp{-\frac{E_k - E_i}{k_B T}} = \frac{g_k}{g_i} \exp{-\frac{h\nu}{k_B T}}$$

Im Gleichgewicht:

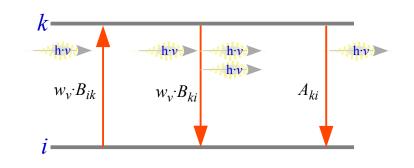
- $-N_k$ Atome im Zustand k
- $-N_i$ Atome im Zustand i
- Übergangsraten $i\rightarrow k$ und $k\rightarrow i$ müssen gleich sein:

$$(1) N_k \cdot (A_{ki} + w_{\nu} B_{ki}) = N_i \cdot w_{\nu} B_{ik}$$

Bei hohen Photondichten kann der Faktor A_{ki} nicht für Gleichgewicht sorgen!

 \rightarrow B_{ik} kann nicht Null sein \rightarrow es muss stimulierte Emission geben!

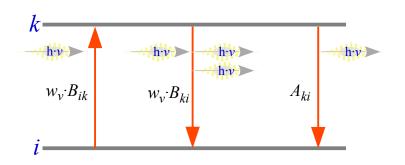
Im Gleichgewicht mit thermischen Strahlungsfeld sind die Zahlen N_k und N_i durch den **Boltzmann-Faktor** gegeben:


(2)
$$\frac{N_k}{N_i} = \frac{g_k}{q_i} \exp{-\frac{E_k - E_i}{k_B T}} = \frac{g_k}{q_i} \exp{-\frac{h\nu}{k_B T}}$$

Erinnerung Planck'sche Strahlungsformel:

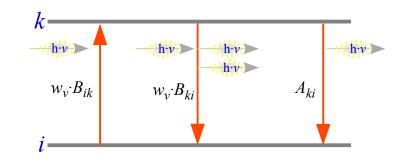
$$S_{
u}=rac{2h
u^3}{c^2}\cdotrac{1}{\exp\left(rac{h
u}{k_BT}
ight)-1}$$
 spektrale Strahlungsdichte (pro Raumwinkel), S. VL 4

Verwenden der Beziehungen (1) und (2):


$$\Rightarrow w_{\nu} = \frac{\frac{N_k}{N_i} A_{ki}}{B_{ik} - \frac{N_k}{N_i} B_{ki}} = \frac{\frac{A_{ki}}{B_{ki}}}{\frac{B_{ik}}{B_{ki}} \left(\frac{N_i}{N_k} - 1\right)}$$
$$= \frac{A_{ki}}{B_{ki}} \cdot \frac{1}{\frac{B_{ik}}{B_{ki}} \frac{g_i}{g_k} \exp\left(\frac{h\nu}{k_B T}\right) - 1}$$

Verwenden der Beziehungen (1) und (2):

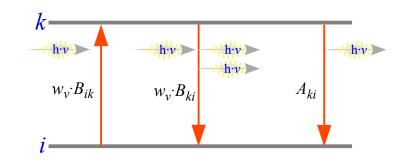
$$\Rightarrow w_{\nu} = \frac{\frac{N_{k}}{N_{i}}A_{ki}}{B_{ik} - \frac{N_{k}}{N_{i}}B_{ki}} = \frac{\frac{A_{ki}}{B_{ki}}}{\frac{B_{ik}}{B_{ki}}\left(\frac{N_{i}}{N_{k}} - 1\right)}$$


$$= \frac{A_{ki}}{B_{ki}} \cdot \frac{1}{\frac{B_{ik}}{B_{ki}}\frac{g_{i}}{g_{k}}\exp\left(\frac{h\nu}{k_{B}T}\right) - 1}$$
Vergleich mit
Planck-Gesetz
$$w_{\nu}(\nu, T) = \frac{8\pi h\nu^{3}}{c^{3}} \cdot \frac{1}{\exp\left(\frac{h\nu}{k_{B}T}\right) - 1}$$

Verwenden der Beziehungen (1) und (2):

$$\Rightarrow w_{\nu} = \frac{\frac{N_{k}}{N_{i}}A_{ki}}{B_{ik} - \frac{N_{k}}{N_{i}}B_{ki}} = \frac{\frac{A_{ki}}{B_{ki}}}{\frac{B_{ik}}{B_{ki}}\left(\frac{N_{i}}{N_{k}} - 1\right)}$$

$$= \frac{A_{ki}}{B_{ki}} \cdot \frac{1}{\frac{B_{ik}}{B_{ki}}\frac{g_{i}}{g_{k}}\exp\left(\frac{h\nu}{k_{B}T}\right) - 1}$$
Vergleich mit Planck-Gesetz
$$w_{\nu}(\nu, T) = \frac{8\pi h\nu^{3}}{c^{3}} \cdot \frac{1}{\exp\left(\frac{h\nu}{k_{D}}\right) - 1}$$



Anmerkung: man kann den Vorfaktor im Grenzfall kleiner Energien aus dem Rayleigh-Jeans Gesetz bestimmen → Einsteins Herleitung der Planck'schen Strahlungsformel

Verwenden der Beziehungen (1) und (2):

$$\Rightarrow w_{\nu} = \frac{\frac{N_{k}}{N_{i}}A_{ki}}{B_{ik} - \frac{N_{k}}{N_{i}}B_{ki}} = \frac{\frac{A_{ki}}{B_{ki}}}{\frac{B_{ik}}{B_{ki}}\left(\frac{N_{i}}{N_{k}} - 1\right)}$$

$$= \frac{A_{ki}}{B_{ki}} \cdot \frac{1}{\frac{B_{ik}}{B_{ki}}\frac{g_{i}}{g_{k}}\exp\left(\frac{h\nu}{k_{B}T}\right) - 1}$$
Vergleich mit
Planck-Gesetz
$$w_{\nu}(\nu, T) = \frac{8\pi h\nu^{3}}{c^{3}} \cdot \frac{1}{\exp\left(\frac{h\nu}{k_{B}T}\right) - 1}$$

Anmerkung: man kann den Vorfaktor im Grenzfall kleiner Energien aus dem Rayleigh-Jeans Gesetz bestimmen → Einsteins Herleitung der Planck'schen Strahlungsformel

Ergebnis: Beziehungen zwischen den Einstein-Koeffizienten

$$\rightarrow g_i B_{ik} = g_k B_{ki}$$
$$A_{ki} = B_{ki} \cdot \frac{8\pi h \nu^3}{c^3}$$

Für gleiche Entartungsgrade g sind sind die Wahrscheinlichkeiten W(Absorption) und W(stimulierte Emission) gleich

$$ightharpoonup
ightharpoonup rac{A_{ki}}{w_
u B_{ki}} = \exp\left(rac{h
u}{k_B T}
ight) - 1$$
 d. h. Wahrscheinlichkeiten

W(spontane Emission) >> W(stimulierte Emission) für $hv >> k_BT$ (d. h. bei thermische Besetzung (k_B :300 K \approx 25 meV))

ohne Herleitung: W(stimulierte Emission) steigt proportional zur Zahl der bereits im Strahlungsfeld vorhandenen Photonen !

Pause

und Zeit für Fragen?

Der Einsteinkoeffizient A beschreibt die (spontane) Übergangswahrscheinlichkeit von einem angeregten Zustand E_a zum Grundzustand E_0 .

Wir betrachten eine Anzahl N_0 von Atomen im Zustand E_a (ohne äußeres Strahlungsfeld).

Frage: Wie viele Atome befinden sich zum späteren Zeitpunkt *t* noch im angeregten Zustand?

Der Einsteinkoeffizient A beschreibt die (spontane) Übergangswahrscheinlichkeit von einem angeregten Zustand E_a zum Grundzustand E_0 .

Wir betrachten eine Anzahl N_0 von Atomen im Zustand E_a (ohne äußeres Strahlungsfeld).

Frage: Wie viele Atome befinden sich zum späteren Zeitpunkt *t* noch im angeregten Zustand?

$$\frac{\mathrm{dN_a(t)}}{\mathrm{dt}} = -A_{a,0}N_a(t)$$

Der Einsteinkoeffizient A beschreibt die (spontane) Übergangswahrscheinlichkeit von einem angeregten Zustand E_a zum Grundzustand E_0 .

Wir betrachten eine Anzahl N_0 von Atomen im Zustand E_a (ohne äußeres Strahlungsfeld).

Frage: Wie viele Atome befinden sich zum späteren Zeitpunkt *t* noch im angeregten Zustand?

$$\frac{\mathrm{dN_a(t)}}{\mathrm{dt}} = -A_{a,0}N_a(t) \qquad \text{Differentialgleicheichung mit der Lösung} \\ \Rightarrow N_a(t) = N_0 \exp{-(A_{a,0} \cdot t)} = N_0 \exp{-\frac{t}{\tau_a}} \\ \text{Exponentielles Zerfallsgesetz}$$

Der Einsteinkoeffizient A beschreibt die (spontane) Übergangswahrscheinlichkeit von einem angeregten Zustand E_a zum Grundzustand E_0 .

Wir betrachten eine Anzahl N_0 von Atomen im Zustand E_a (ohne äußeres Strahlungsfeld).

Frage: Wie viele Atome befinden sich zum späteren Zeitpunkt *t* noch im angeregten Zustand?

$$\frac{\mathrm{dN_a(t)}}{\mathrm{dt}} = -A_{a,0}N_a(t) \qquad \text{Differentialgleicheichung mit der Lösung} \\ \Rightarrow N_a(t) = N_0 \exp{-(A_{a,0} \cdot t)} = N_0 \exp{-\frac{t}{\tau_a}} \\ \text{Exponentielles Zerfallsgesetz}$$

 $\tau_a = 1/A_{a,0}$ ist die **mittlere Lebensdauer** des Zustands a

Der Einsteinkoeffizient A beschreibt die (spontane) Übergangswahrscheinlichkeit von einem angeregten Zustand E_a zum Grundzustand E_0 .

Wir betrachten eine Anzahl N_0 von Atomen im Zustand E_a (ohne äußeres Strahlungsfeld).

Frage: Wie viele Atome befinden sich zum späteren Zeitpunkt *t* noch im angeregten Zustand?

$$\frac{\mathrm{dN_a(t)}}{\mathrm{dt}} = -A_{a,0}N_a(t) \qquad \text{Differentialgleicheichung mit der Lösung} \\ \Rightarrow N_a(t) = N_0 \exp{-(A_{a,0} \cdot t)} = N_0 \exp{-\frac{t}{\tau_a}} \\ \text{Exponentielles Zerfallsgesetz}$$

 $\tau_a = 1/A_{a,0}$ ist die **mittlere Lebensdauer** des Zustands a

Bezogen auf das einzelne Atom heißt das:

Die Wahrscheinlichkeitsdichte W(t) , ein angeregtes Atom nach der Zeit t noch im angeregten Zustand zu finden, ist $W(t) = \frac{1}{\tau_a} \exp{-\frac{t}{\tau_a}}$

Die Wellenfunktion für den Zustand a ist also gegeben durch:

$$|\psi_a(t)|^2 \propto \exp(-At) \rightarrow \Psi_a(t) \propto \exp(-A/2t) \cdot \exp(-i\omega_0 t) \operatorname{mit} \omega_0 = (E_a - E_0)/\hbar$$

Die Wellenfunktion für den Zustand a ist also gegeben durch:

$$|\psi_a(t)|^2 \propto \exp(-At) \rightarrow \Psi_a(t) \propto \exp(-A/2t) \cdot \exp(-i\omega_0 t) \operatorname{mit} \omega_0 = (E_a - E_0)/\hbar$$

Frage: welche Frequenzen tragen bei?

Die Wellenfunktion für den Zustand a ist also gegeben durch:

$$|\psi_a(t)|^2 \propto \exp(-At) \to \Psi_a(t) \propto \exp(-A/2t) \cdot \exp(-i\omega_0 t) \operatorname{mit} \omega_0 = (E_a - E_0)/\hbar$$

Frage: welche Frequenzen tragen bei ?

führen Fourier-Transformation durch:

$$\Phi(\omega) = \int_0^\infty \exp{(-A/2\,t)} \cdot \exp(-i\omega_0 t) \cdot \exp(\omega t) dt$$
 analog zur Konstruktion der Amplitude $A(k)$ eines Wellenpakets

Die Wellenfunktion für den Zustand a ist also gegeben durch:

$$|\psi_a(t)|^2 \propto \exp(-At) \rightarrow \Psi_a(t) \propto \exp(-A/2t) \cdot \exp(-i\omega_0 t) \operatorname{mit} \omega_0 = (E_a - E_0)/\hbar$$

Frage: welche Frequenzen tragen bei ?

führen Fourier-Transformation durch:

$$\Phi(\omega) = \int_0^\infty \exp\left(-A/2\,t\right) \cdot \exp(-i\omega_0 t) \cdot \exp(\omega t) dt$$
 analog zur Konstruktion der Amplitude $A(k)$ eines Wellenpakets

$$\rightarrow \Phi(\omega) = \int_0^\infty \exp(i(\omega - \omega_0 - iA/2)t) dt$$

Die Wellenfunktion für den Zustand a ist also gegeben durch:

$$|\psi_a(t)|^2 \propto \exp(-At) \rightarrow \Psi_a(t) \propto \exp(-A/2t) \cdot \exp(-i\omega_0 t) \operatorname{mit} \omega_0 = (E_a - E_0)/\hbar$$

Frage: welche Frequenzen tragen bei ?

führen Fourier-Transformation durch:

$$\Phi(\omega) = \int_0^\infty \exp(-A/2t) \cdot \exp(-i\omega_0 t) \cdot \exp(\omega t) dt$$

analog zur Konstruktion der Amplitude A(k) eines Wellenpakets

$$\to \Phi(\omega) = \int_0^\infty \exp(i(\omega - \omega_0 - iA/2)t) dt = \left[\frac{1}{i(\omega - \omega_0 + iA)} \exp(i(\omega - \omega_0 - iA/2)t)\right]_0^\infty$$

Die Wellenfunktion für den Zustand a ist also gegeben durch:

$$|\psi_a(t)|^2 \propto \exp(-At) \rightarrow \Psi_a(t) \propto \exp(-A/2t) \cdot \exp(-i\omega_0 t) \operatorname{mit} \omega_0 = (E_a - E_0)/\hbar$$

Frage: welche Frequenzen tragen bei ?

führen Fourier-Transformation durch:

$$\Phi(\omega) = \int_0^\infty \exp\left(-A/2\,t\right) \cdot \exp(-i\omega_0 t) \cdot \exp(\omega t) dt$$
 analog zur Konstruktion der Amplitude $A(k)$ eines Wellenpakets

Die Wellenfunktion für den Zustand a ist also gegeben durch:

$$|\psi_a(t)|^2 \propto \exp(-At) \rightarrow \Psi_a(t) \propto \exp(-A/2t) \cdot \exp(-i\omega_0 t) \operatorname{mit} \omega_0 = (E_a - E_0)/\hbar$$

Frage: welche Frequenzen tragen bei ?

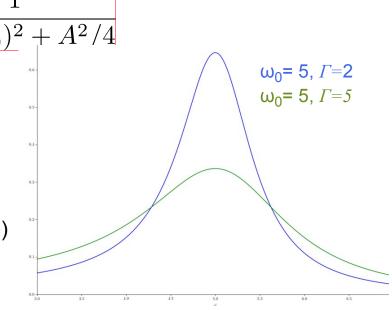
führen Fourier-Transformation durch:

$$\Phi(\omega) = \int_0^\infty \exp(-A/2t) \cdot \exp(-i\omega_0 t) \cdot \exp(\omega t) dt$$

analog zur Konstruktion der Amplitude A(k) eines Wellenpakets

Die Wellenfunktion für den Zustand a ist also gegeben durch:

$$|\psi_a(t)|^2 \propto \exp(-At) \rightarrow \Psi_a(t) \propto \exp(-A/2t) \cdot \exp(-i\omega_0 t) \operatorname{mit} \omega_0 = (E_a - E_0)/\hbar$$


Frage: welche Frequenzen tragen bei ?

führen Fourier-Transformation durch:

$$\Phi(\omega) = \int_0^\infty \exp(-A/2t) \cdot \exp(-i\omega_0 t) \cdot \exp(\omega t) dt$$

analog zur Konstruktion der Amplitude A(k) eines Wellenpakets

Diese Funktion beschreibt die Verteilung der Energie $E = \hbar \omega$ eines instabilen Zustands. Man nennt sie Breit-Wigner- (oder Lorentz-Kurve) mit der Breite $\Gamma := A$.

Lebensdauer Atomarer Zustände

Wir halten fest:

Die Übergangswahrscheinlichkeit A eines instabilen Zustands in den Grundzustand

- ist gleich der Breite Γ der Energieverteilung ("Linienbreite")
- und das Inverse der mittleren Lebensdauer τ des Zustands:

$$A = 1/\tau = \Gamma$$

Lebensdauer Atomarer Zustände

Wir halten fest:

Die Übergangswahrscheinlichkeit A eines instabilen Zustands in den Grundzustand

- ist gleich der Breite Γ der Energieverteilung ("Linienbreite")
- und das Inverse der mittleren Lebensdauer τ des Zustands:

$$A = 1/\tau = \Gamma$$

Beispiel:

Der Wasserstoff-Überang $1p \rightarrow 1s$ hat eine Energie von 10.2 eV und eine Linienbreite $\hbar \cdot \Gamma$ von 0.4 ·10⁻⁶ eV ; dem entspricht eine mittlere Lebensdauer von 1.7 ns .

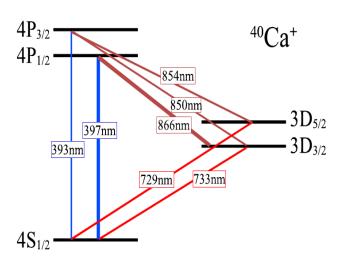
Lebensdauer Atomarer Zustände

Wir halten fest:

Die Übergangswahrscheinlichkeit A eines instabilen Zustands in den Grundzustand

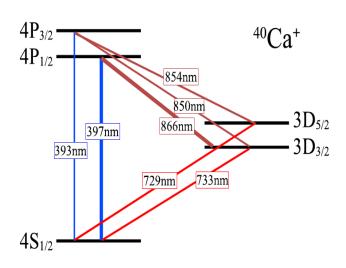
- ist gleich der Breite Γ der Energieverteilung ("Linienbreite")
- und das Inverse der mittleren Lebensdauer τ des Zustands:

$$A = 1/\tau = \Gamma$$


Beispiel:

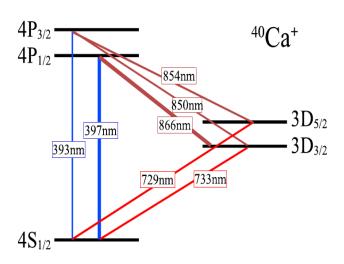
Der Wasserstoff-Überang $1p \rightarrow 1s$ hat eine Energie von 10.2 eV und eine Linienbreite $\hbar \cdot \Gamma$ von 0.4 ·10⁻⁶ eV ; dem entspricht eine mittlere Lebensdauer von 1.7 ns .

Anmerkung: die eben hergeleiteten Zusammenhänge sind konsistent mit der Heisenberg'schen Unschärfe-Relation:


$$\Delta E \Delta t \simeq \hbar \Gamma \tau = \hbar > \hbar/2$$

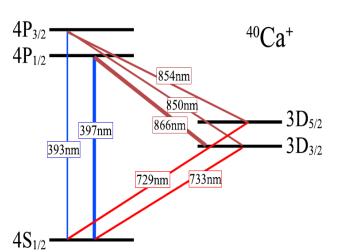
"Quantensprüngen zugeschaut"

Ca⁺-lonen in Paul-Falle (s. Video) werden durch einen intensiven Laser in Resonanz mit dem 4P – 4S - Übergang sichtbar gemacht.


"Quantensprüngen zugeschaut"

Ca⁺-lonen in Paul-Falle (s. Video) werden durch einen intensiven Laser in Resonanz mit dem 4P – 4S - Übergang sichtbar gemacht.

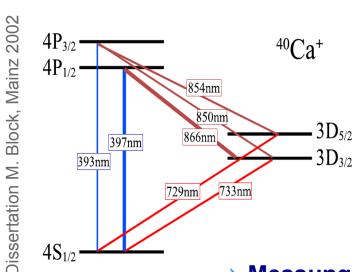
– ein zweiter Laser regt den 3D-Zustand an
 → angeregte Ionen sind "unsichtbar"


"Quantensprüngen zugeschaut"

Ca⁺-lonen in Paul-Falle (s. Video) werden durch einen intensiven Laser in Resonanz mit dem 4P – 4S - Übergang sichtbar gemacht.

- ein zweiter Laser regt den 3D-Zustand an
 → angeregte Ionen sind "unsichtbar"
- nach spontaner Emission in den Grundzustand setzt die Resonanzstreuung wieder ein

"Quantensprüngen zugeschaut"

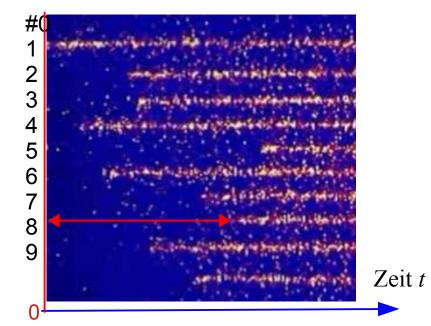


Ca⁺-lonen in Paul-Falle (s. Video) werden durch einen intensiven Laser in Resonanz mit dem 4P – 4S - Übergang sichtbar gemacht.

- ein zweiter Laser regt den 3D-Zustand an
 → angeregte Ionen sind "unsichtbar"
- nach spontaner Emission in den Grundzustand setzt die Resonanzstreuung wieder ein

→ Messung der individuellen Lebensdauern am gleichen Ca⁺- Ion in aufeinander folgenden Anregungen

"Quantensprüngen zugeschaut"


Ca⁺-lonen in Paul-Falle (s. Video) werden durch einen intensiven Laser in Resonanz mit dem 4P – 4S - Übergang sichtbar gemacht.

- ein zweiter Laser regt den 3D-Zustand an
 → angeregte Ionen sind "unsichtbar"
- nach spontaner Emission in den Grundzustand setzt die Resonanzstreuung wieder ein

→ Messung der individuellen Lebensdauern am gleichen Ca+- Ion in aufeinander folgenden Anregungen

Leuchtspuren von angeregten Ca⁺-Ionen in Resonanzfluoreszenz

stimulierte Emission:

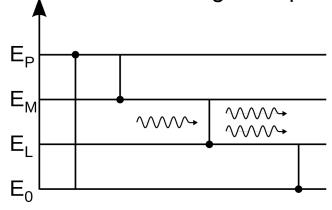
- postuliert 1916 von A. Einstein
- erster experimenteller Nachweis 1928 bei Gasentladungen (R. Ladenburg)
- erste Realisierung als Quelle für Mikrowellen 1954 (MASER, C.H. Townes)
- erster optischer LASER 1960 (Rubin-Laser, T. Maiman)

Anwendung: Der Laser

stimulierte Emission:

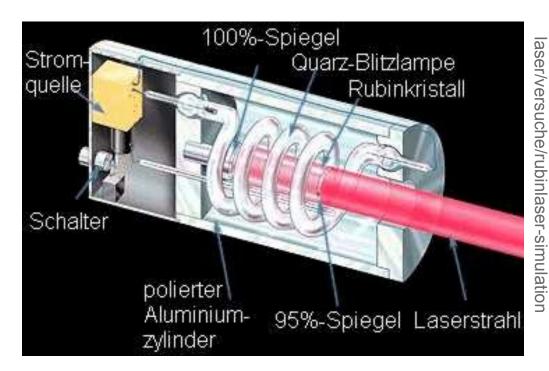
- postuliert 1916 von A. Einstein
- erster experimenteller Nachweis 1928 bei Gasentladungen (R. Ladenburg)
- erste Realisierung als Quelle für Mikrowellen 1954 (MASER, C.H. Townes)
- erster optischer LASER 1960 (Rubin-Laser, T. Maiman)

LASER = Light Amplification by Stimulated Emission of Radiation


https://www.leifiphysik.de/atomphysik/

Anwendung: Der Laser

stimulierte Emission:


- postuliert 1916 von A. Einstein
- erster experimenteller Nachweis 1928 bei Gasentladungen (R. Ladenburg)
- erste Realisierung als Quelle für Mikrowellen 1954 (MASER, C.H. Townes)
- erster optischer LASER 1960 (Rubin-Laser, T. Maiman)

LASER = Light Amplification by Stimulated Emission of Radiation

Prinzip:

in angeregten Zuständen gespeicherte Energie wird durch stimulierte Emission kohärent in einen Lichtstrahl

Schemazeichnung eines Rubin-Lasers

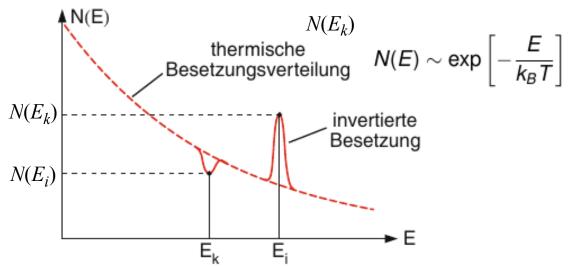
Der Laser: Prinzip

LASER - Grundidee: neuartige monochromatische kohärente Lichtquelle durch gezielte Anregung von stimulierter Emission

Voraussetzung für stimulierte Emission:

äußeres Strahlungsfeld → stehende Welle in optischem Resonator

Der Laser: Prinzip


LASER - Grundidee: neuartige monochromatische kohärente Lichtquelle durch gezielte Anregung von stimulierter Emission

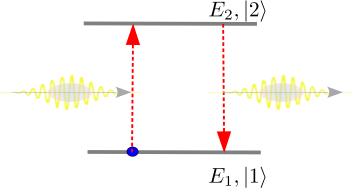
Voraussetzung für stimulierte Emission:

äußeres Strahlungsfeld → stehende Welle in optischem Resonator

Erhöhung der Wahrscheinlichkeit für stimulierte Emission durch "Besetzungsinversion"

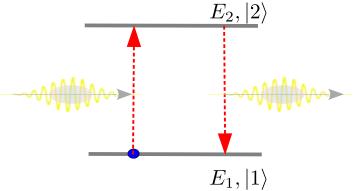

= gezielte Besetzung von Quantenzuständen höherer Energie (als bei thermischer Besetzung)

Methode: Energiezufuhr durch "optisches Pumpen"


Der Laser: Prinzip (2)

Prinzipieller Aufbau eines Lasers:

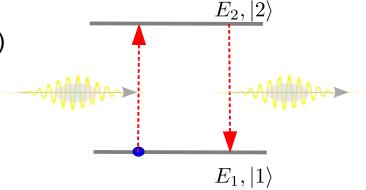
Wie könnte man Energie in angeregten Zuständen speichern


d. h. welche Materialien eignen sich als "aktives Medium"?

Wie könnte man Energie in angeregten Zuständen speichern

d. h. welche Materialien eignen sich als "aktives Medium"?

$$\frac{dN_1}{dt} = I \cdot (-B \cdot N_1 + B \cdot N_2) + A \cdot N_2$$



Wie könnte man Energie in angeregten Zuständen speichern

d. h. welche Materialien eignen sich als "aktives Medium"?

$$\frac{dN_1}{dt} = I \cdot (-B \cdot N_1 + B \cdot N_2) + A \cdot N_2$$

$$\frac{dN_2}{dt} = I \cdot (B \cdot N_1 - B \cdot N_2) - A \cdot N_2 = -\frac{dN_2}{dt}$$

 $E_2, |2\rangle$

Wie könnte man Energie in angeregten Zuständen speichern

d. h. welche Materialien eignen sich als "aktives Medium"?

$$\frac{dN_1}{dt} = I \cdot (-B \cdot N_1 + B \cdot N_2) + A \cdot N_2$$

$$\frac{dN_2}{dt} = I \cdot (B \cdot N_1 - B \cdot N_2) - A \cdot N_2 = -\frac{dN_2}{dt}$$

$$\Rightarrow \frac{d(N_1 - N_2)}{dt} = -2I \cdot B(N_1 - N_2) + A \cdot (N_1 + N_2) - A \cdot (N_1 - N_2)$$

 $E_2, |2\rangle$

Wie könnte man Energie in angeregten Zuständen speichern

d. h. welche Materialien eignen sich als "aktives Medium"?

$$\frac{dN_1}{dt} = I \cdot (-B \cdot N_1 + B \cdot N_2) + A \cdot N_2$$

$$\frac{dN_2}{dt} = I \cdot (B \cdot N_1 - B \cdot N_2) - A \cdot N_2 = -\frac{dN_2}{dt}$$

$$\Rightarrow \frac{d(N_1 - N_2)}{dt} = -2I \cdot B(N_1 - N_2) + A \cdot (N_1 + N_2) - A \cdot (N_1 - N_2)$$

im Gleichgewicht:
$$\frac{d(N_1 - N_2)}{dt} = 0$$

 $E_2, |2\rangle$

Wie könnte man Energie in angeregten Zuständen speichern

d. h. welche Materialien eignen sich als "aktives Medium"?

$$\frac{dN_1}{dt} = I \cdot (-B \cdot N_1 + B \cdot N_2) + A \cdot N_2$$

$$\frac{dN_2}{dt} = I \cdot (B \cdot N_1 - B \cdot N_2) - A \cdot N_2 = -\frac{dN_2}{dt}$$

$$\Rightarrow \frac{d(N_1 - N_2)}{dt} = -2I \cdot B(N_1 - N_2) + A \cdot (N_1 + N_2) - A \cdot (N_1 - N_2)$$

im Gleichgewicht:
$$\frac{d(N_1 - N_2)}{dt} = 0 \quad \Rightarrow N_1 - N_2 = \frac{N_1 + N_2}{1 + 2I/(A/B)}$$

Wie könnte man Energie in angeregten Zuständen speichern

d. h. welche Materialien eignen sich als "aktives Medium"?

erste Idee: Zwei-Niveau-System mit Einstein-Koeffizienten A und B ($B=B_{12}=B_{21}$!) und Intensität I des äußeren Strahlungsfeldes

$$\frac{dN_1}{dt} = I \cdot (-B \cdot N_1 + B \cdot N_2) + A \cdot N_2$$

$$\frac{dN_2}{dt} = I \cdot (B \cdot N_1 - B \cdot N_2) - A \cdot N_2 = -\frac{dN_2}{dt}$$

$$\Rightarrow \frac{d(N_1 - N_2)}{dt} = -2I \cdot B(N_1 - N_2) + A \cdot (N_1 + N_2) - A \cdot (N_1 - N_2)$$

im Gleichgewicht:
$$\frac{d(N_1 - N_2)}{dt} = 0 \quad \Rightarrow N_1 - N_2 = \frac{N_1 + N_2}{1 + 2I/(A/B)}$$

Dieser Ausdruck ist immer positiv, d.h. es sind immer weniger Teilchen im Zustand 2 als im Zustand 1

 $E_2, |2\rangle$

 $E_1, |1\rangle$

→ In einem Zwei-Niveau-System ist keine Besetzungsinversion möglich.

Wie könnte man Energie in angeregten Zuständen speichern

d. h. welche Materialien eignen sich als "aktives Medium"?

erste Idee: Zwei-Niveau-System mit Einstein-Koeffizienten A und B ($B=B_{12}=B_{21}$!) und Intensität I des äußeren Strahlungsfeldes

$$\frac{dN_1}{dt} = I \cdot (-B \cdot N_1 + B \cdot N_2) + A \cdot N_2$$

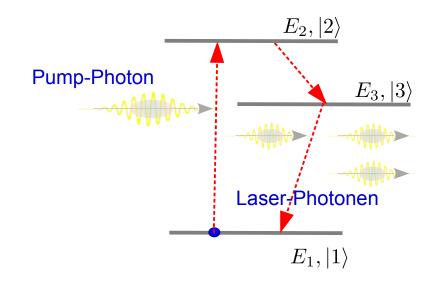
$$\frac{dN_2}{dt} = I \cdot (B \cdot N_1 - B \cdot N_2) - A \cdot N_2 = -\frac{dN_2}{dt}$$

$$\Rightarrow \frac{d(N_1 - N_2)}{dt} = -2I \cdot B(N_1 - N_2) + A \cdot (N_1 + N_2) - A \cdot (N_1 - N_2)$$

im Gleichgewicht:
$$\frac{d(N_1 - N_2)}{dt} = 0 \quad \Rightarrow N_1 - N_2 = \frac{N_1 + N_2}{1 + 2I/(A/B)}$$

Dieser Ausdruck ist immer positiv, d.h. es sind immer weniger Teilchen im Zustand 2 als im Zustand 1

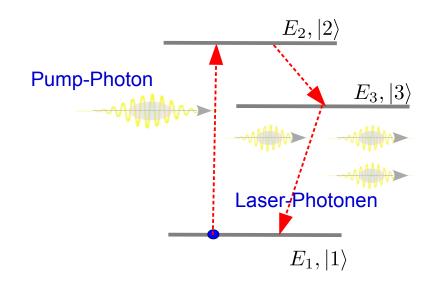
 $E_2, |2\rangle$


→ In einem Zwei-Niveau-System ist keine Besetzungsinversion möglich.

Anmerkung:

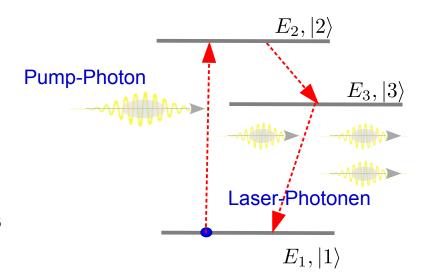
Das Verhältnis der Einsteinkoeffizienten $rac{A}{R}=:I_s$ nennt man "Sättigungsintensität"

Versuchen wir etwas Komplizierteres:


Das Drei-Niveau-System

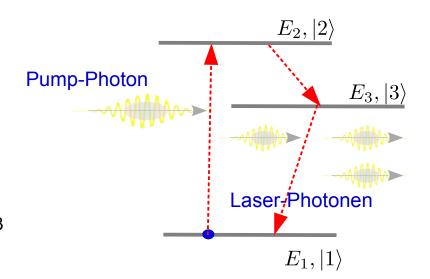
Versuchen wir etwas Komplizierteres:

Das Drei-Niveau-System


Pumpen auf E₂

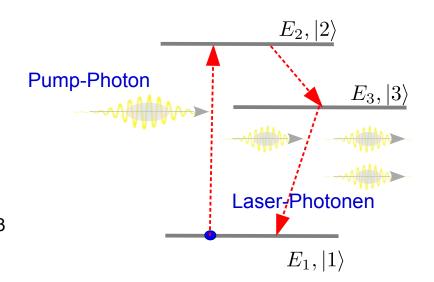
Versuchen wir etwas Komplizierteres:

Das Drei-Niveau-System


- Pumpen auf E₂
- strahlungsloser, schneller Übergang zu E₃
 (durch Molekül- oder Gitterschwingung)

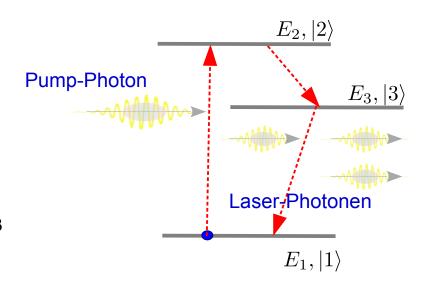
Versuchen wir etwas Komplizierteres:

Das Drei-Niveau-System


- Pumpen auf E₂
- strahlungsloser, schneller Übergang zu E₃
 (durch Molekül- oder Gitterschwingung)
- Pump-Photonen lösen keine Übergänge $E_3 \rightarrow E_1$ aus
 - → Besetzungsinversion in Niveau E₃

Versuchen wir etwas Komplizierteres:

Das Drei-Niveau-System

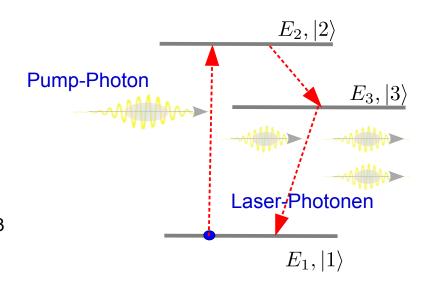

- Pumpen auf E₂
- strahlungsloser, schneller Übergang zu E₃
 (durch Molekül- oder Gitterschwingung)
- Pump-Photonen lösen keine Übergänge $E_3 \rightarrow E_1$ aus
 - → Besetzungsinversion in Niveau E₃
- spontane Übergänge $E_3 \rightarrow E_1$ der "Laser-Frequenz" $v = h / (E_3 E_1)$ führen zu stimulierter Emission $E_3 \rightarrow E_1$

Versuchen wir etwas Komplizierteres:

Das Drei-Niveau-System

- Pumpen auf E₂
- strahlungsloser, schneller Übergang zu E₃
 (durch Molekül- oder Gitterschwingung)
- Pump-Photonen lösen keine Übergänge $E_3 \rightarrow E_1$ aus
 - → Besetzungsinversion in Niveau E₃
- spontane Übergänge $E_3 \rightarrow E_1$ der "Laser-Frequenz" $v = h / (E_3 E_1)$ führen zu stimulierter Emission $E_3 \rightarrow E_1$

Betrachtung wie eben,

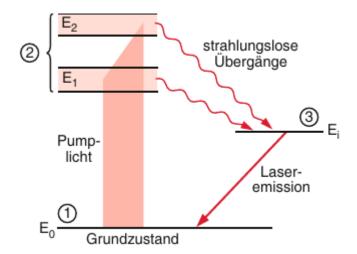

nur das dieses Mal die stimulierte Emission durch die Pump-Photonen wegfällt :

$$N_1 - N_3 = (N_1 + N_3) \frac{1 - I/I_s}{1 + I/I_s}$$

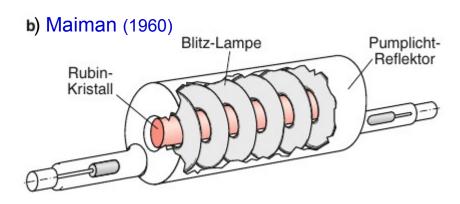
Versuchen wir etwas Komplizierteres:

Das Drei-Niveau-System

- Pumpen auf E₂
- strahlungsloser, schneller Übergang zu E₃
 (durch Molekül- oder Gitterschwingung)
- Pump-Photonen lösen keine Übergänge $E_3 \rightarrow E_1$ aus
 - → Besetzungsinversion in Niveau E₃
- spontane Übergänge $E_3 \rightarrow E_1$ der "Laser-Frequenz" $v = h / (E_3 E_1)$ führen zu stimulierter Emission $E_3 \rightarrow E_1$

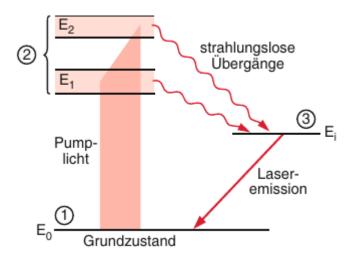

Betrachtung wie eben,

nur das dieses Mal die stimulierte Emission durch die Pump-Photonen wegfällt :

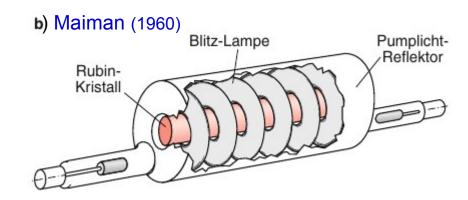

$$N_1 - N_3 = (N_1 + N_3) \frac{1 - I/I_s}{1 + I/I_s}$$

Für $I > I_s$ wird dieser Ausdruck negativ \rightarrow **Besetzungsinversion**

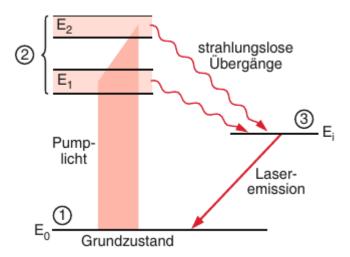
Drei-Niveaue-Laser: technische Realisierung



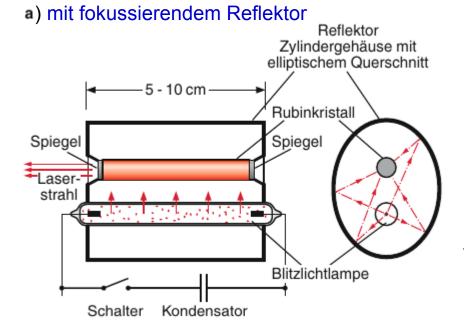
Termschema des Rubins

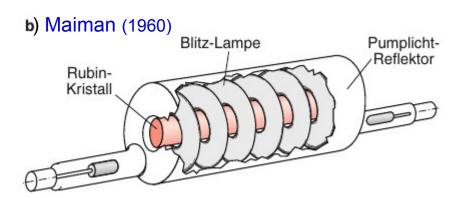

Technische Realisierungen Rubin-Laser (Aktives Medium: Rubin = Chrom-dotierter Al₂O₃ – Stab)

Drei-Niveaue-Laser: technische Realisierung


Termschema des Rubins

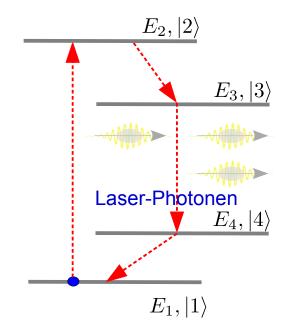
- Anregung von Cr⁺⁺⁺-Ionen im Rubinstab durch Blitzlampe in zwei Energieniveaus E₁, E₂;
- Niveaus verbreitert durch Wechselwirkung mit den Festkörperatomen
 - → bessere Absorption aus dem Blitzlicht;
- Übergänge von E₁, E₂ ins Laserniveau E₃;
- zwei planparallele Spiegel als Resonator definieren Strahlrichtung
- \rightarrow Laserpulse von 0.2 ms Dauer mit λ =649 nm .


Technische Realisierungen Rubin-Laser (Aktives Medium: Rubin = Chrom-dotierter Al₂O₃ – Stab)


Drei-Niveaue-Laser: technische Realisierung

Termschema des Rubins

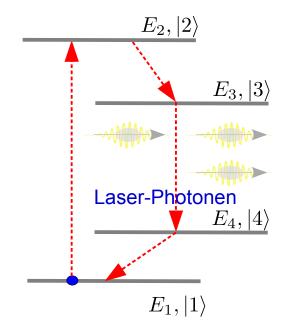
- Anregung von Cr⁺⁺⁺-Ionen im Rubinstab durch Blitzlampe in zwei Energieniveaus E₁, E₂;
- Niveaus verbreitert durch Wechselwirkung mit den Festkörperatomen
 - → bessere Absorption aus dem Blitzlicht;
- Übergänge von E₁, E₂ ins Laserniveau E₃;
- zwei planparallele Spiegel als Resonator definieren Strahlrichtung
- \rightarrow Laserpulse von 0.2 ms Dauer mit λ =649 nm .



Technische Realisierungen Rubin-Laser (Aktives Medium: Rubin = Chrom-dotierter Al₂O₃ – Stab)

Es geht auch so:

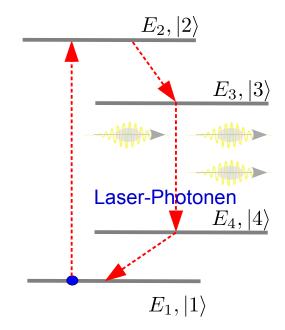
Das Vier-Niveau-System



Es geht auch so:

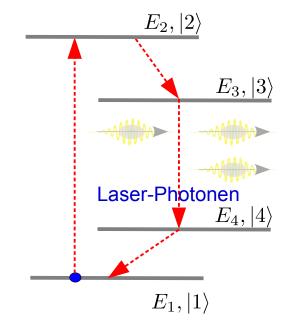
Das Vier-Niveau-System

(z.B. CO₂-Laser oder He-Ne-Laser)


- Pumpen durch Stoßanregung auf E2

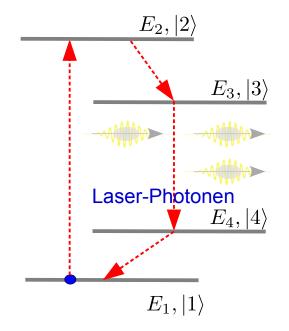
Es geht auch so:

Das Vier-Niveau-System


- Pumpen durch Stoßanregung auf E₂
- strahlungsloser, schneller Übergang zu E₃
 (durch Molekül- oder Gitterschwingung)

Es geht auch so:

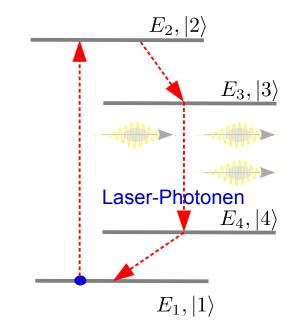
Das Vier-Niveau-System


- Pumpen durch Stoßanregung auf E₂
- strahlungsloser, schneller Übergang zu E₃
 (durch Molekül- oder Gitterschwingung)
- spontane Übergänge $E_3 \rightarrow E_4$ der "Laser-Frequenz" $v = h / (E_3 E_4)$ führen zu stimulierter Emission $E_3 \rightarrow E_4$

Es geht auch so:

Das Vier-Niveau-System

- Pumpen durch Stoßanregung auf E₂
- strahlungsloser, schneller Übergang zu E₃
 (durch Molekül- oder Gitterschwingung)
- spontane Übergänge $E_3 \rightarrow E_4$ der "Laser-Frequenz" $v = h / (E_3 E_4)$ führen zu stimulierter Emission $E_3 \rightarrow E_4$
- schneller Übergang E₄→E₁
 durch Stöße



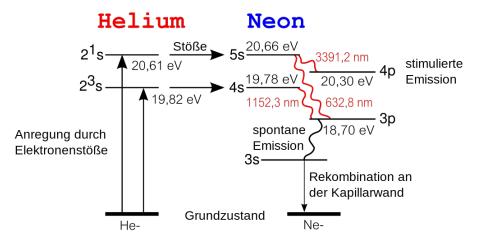
Es geht auch so:

Das Vier-Niveau-System

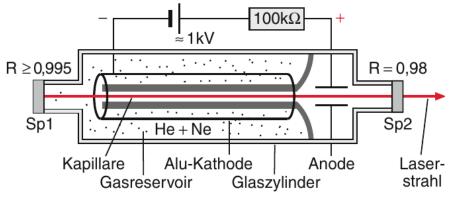
(z.B. CO₂-Laser oder He-Ne-Laser)

- Pumpen durch Stoßanregung auf E₂
- strahlungsloser, schneller Übergang zu E₃
 (durch Molekül- oder Gitterschwingung)
- spontane Übergänge $E_3 \rightarrow E_4$ der "Laser-Frequenz" $v = h / (E_3 E_4)$ führen zu stimulierter Emission $E_3 \rightarrow E_4$
- schneller Übergang E₄→E₁
 durch Stöße

Betrachtung wie eben:

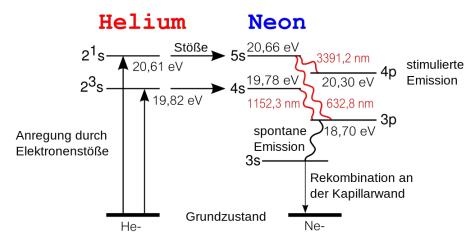

$$N_4 - N_3 = -(N_4 + N_3) \frac{I/I_s}{1 + I/I_s}$$

Dieser Ausdruck ist immer negativ

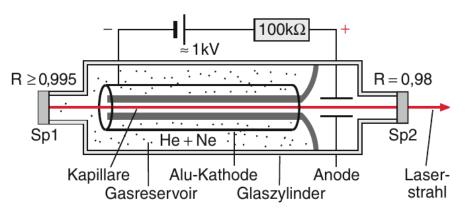

→ effiziente Besetzungsinversion

W. Demtröder, Experimentalphysik 3,

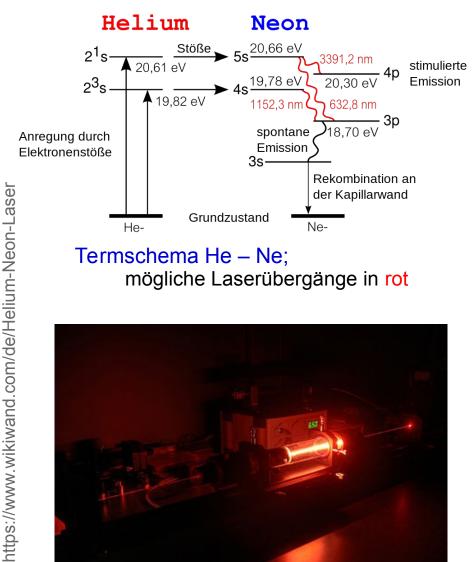
Vier-Niveau-Laser: technische Realisierung



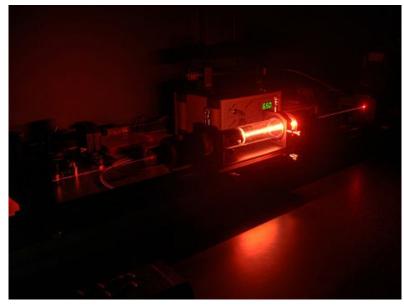
Termschema He – Ne; mögliche Laserübergänge in rot


Aufbau eines He-Ne - Lasers

Vier-Niveau-Laser: technische Realisierung

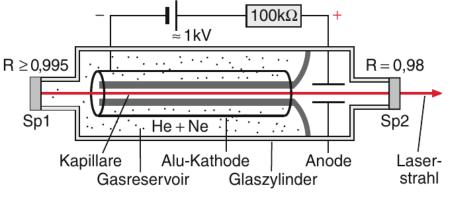

Termschema He – Ne; mögliche Laserübergänge in rot

- Gasentladung erzeugt angeregte He- und Ne-Atome;
- zwei metastabile Zustände des He (2¹S₀ und 2³S₁) reichern sich an;
- angeregte He-Atome übertragen in Stößen Energie auf die 4S und 5S-Niveaus von Ne;
- Besetzungsumkehr schon mit einem Bruchteil von ~1ppM der Ne-Atome
 - → kontinuierliches Laserlicht



Aufbau eines He-Ne - Lasers

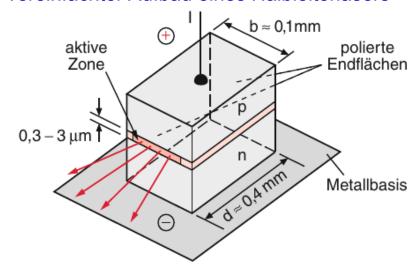
Vier-Niveau-Laser: technische Realisierung

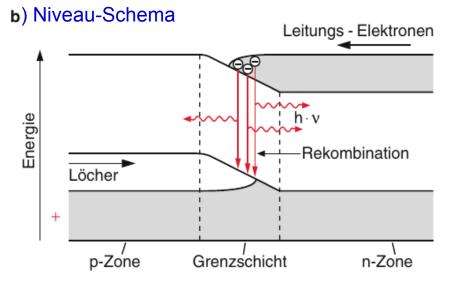


Termschema He – Ne; mögliche Laserübergänge in rot

He-Ne-Laser im Betrieb

- Gasentladung erzeugt angeregte He- und Ne-Atome:
- zwei metastabile Zustände des He $(2^{1}S_{0} \text{ und } 2^{3}S_{1}) \text{ reichern sich an};$
- angeregte He-Atome übertragen in Stößen Energie auf die 4S und 5S-Niveaus von Ne;
- Besetzungsumkehr schon mit einem Bruchteil von ~1ppM der Ne-Atome
 - → kontinuierliches Laserlicht


Aufbau eines He-Ne - Lasers


Halbleiter-Laser

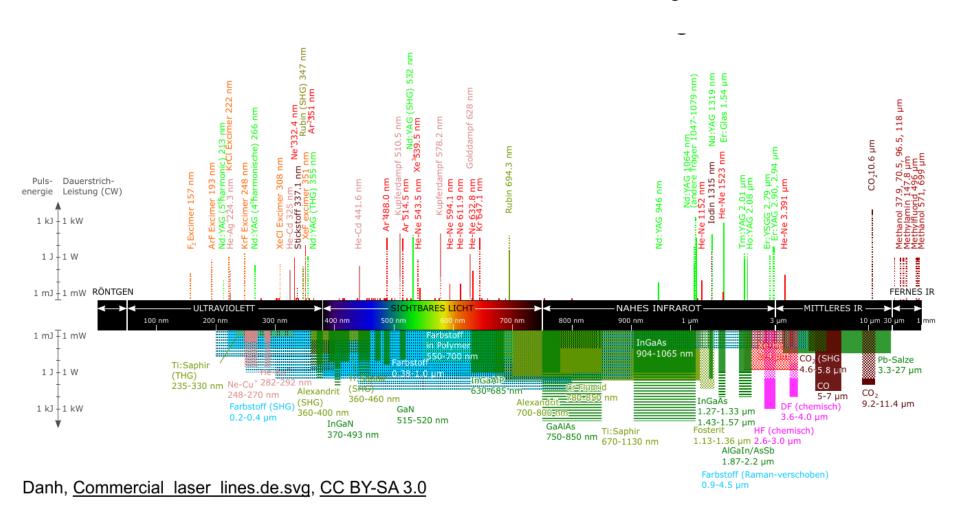
a) vereinfachter Aufbau eines Halbleiterlasers

Prinzip:

Elektron-Loch-Rekombination in stromdurchflossener Halbeiter-Diode mit verspiegelten Endflächen

Weitere Typen von Lasern

Aktives Medium	Beispiele	Anwendung
Festkörper: Kristalle	Nd:YAG (Yttrium- Aluminium-Granat)	Industrie, Medizin, Forschung
Festkörper: Halbleiter	AlGalnP	CD, DVD, Blu-ray
Flüssigkeiten	Farbstofflaser	abstimmbare Laserfrequenzen
Gase	CO ₂	Industrie: schneiden, schweißen
freie Elektronen	Flash, LCLS, XFEL	brilliante Röntgenlaser


Einteilung nach Betriebsmodus/Signalform:

- kontinuierlich (Dauerstrich, engl.: continuous wave, CW)
 nicht für alle aktiven Medien möglich
- Gepulst (z. B. durch gepulstes Pumpen)
 - → ultrakurze Pulse: fs-Laser

Typen von Lasern

Viele Typen von Lasern: Gaslaser, Festkörperlaser, Farbstofflaser

Gesamter Bereich von Ultraviolett bis Infrarot abgedeckt

Ende Vorlesung 13

und Zeit für Fragen?