

Diese Veranstaltung wir aufgezeichnet und als
Medien-Cast über KIT - ILIAS bereit gestellt

Nur zur KIT-internen vorlesungsbegleitenden Nutzung, Weitergabe & anderweitige Verwendung ist untersagt

Vorlesung 15 b Moderne Physik (L)

Kristallstruktur

Günter Quast

Kristallstruktur

Zustandsformen von Materie – Plasma, Gas, Flüssigkeit und Festkörper -

hängen von der Größe

- der Anziehungskräfte zwischen den Teilchen
- und ihrer thermischen Energie ab

Kristallstruktur

Zustandsformen von Materie – Plasma, Gas, Flüssigkeit und Festkörper -

hängen von der Größe

- der Anziehungskräfte zwischen den Teilchen
- und ihrer thermischen Energie ab

Plasma	Gas	Flüssigkeit	Festkörper
freie Elektronen und Kerne; Bindungs- energie << k _B T			

Kristallstruktur

Zustandsformen von Materie – Plasma, Gas, Flüssigkeit und Festkörper -

hängen von der Größe

- der Anziehungskräfte zwischen den Teilchen
- und ihrer thermischen Energie ab

Plasma

Gas

Flüssigkeit

Festkörper

freie Elektronen und Kerne; Bindungsenergie << k_BT ungeordnete Bewegung von Atomen und Molekülen, deren gegenseitige Anziehung << k_BT

Kristallstruktur

Zustandsformen von Materie – Plasma, Gas, Flüssigkeit und Festkörper -

hängen von der Größe

- der Anziehungskräfte zwischen den Teilchen
- und ihrer thermischen Energie ab

Plasma

Gas

Flüssigkeit

freie Elektronen und Kerne; Bindungsenergie << k_BT ungeordnete Bewegung von Atomen und Molekülen, deren gegenseitige Anziehung << k_BT Nahordnung, benachbarte Atome/Moleküle ziehen sich an, Anziehung ~ k_BT

Festkörper

Kristallstruktur

Zustandsformen von Materie – Plasma, Gas, Flüssigkeit und Festkörper -

hängen von der Größe

- der Anziehungskräfte zwischen den Teilchen
- und ihrer thermischen Energie ab

Plasma

Gas

Flüssigkeit

Festkörper

freie Elektronen und Kerne; Bindungsenergie << k_BT ungeordnete Bewegung von Atomen und Molekülen, deren gegenseitige Anziehung << k_BT Nahordnung, benachbarte Atome/Moleküle ziehen sich an, Anziehung ~ k_BT Nah- und Fernordnung, Anziehung > k_BT, Ausbildung von Kristallstrukturen

Kristallstruktur

Zustandsformen von Materie – Plasma, Gas, Flüssigkeit und Festkörper -

hängen von der Größe

- der Anziehungskräfte zwischen den Teilchen
- und ihrer thermischen Energie ab

Plasma	Gas	Flüssigkeit	Festkörper
freie Elektronen und Kerne; Bindungs- energie << k _B T	ungeordnete Bewegung von Atomen und Molekülen, deren gegenseitige Anziehung << k _B T	Nahordnung, benach- barte Atome/Moleküle ziehen sich an, Anziehung ~ k _B T	Nah- und Fernordnung, Anziehung > k _B T, Ausbildung von Kristallstrukturen

Bei hinreichend niedrigen Temperaturen bilden Atome und Moleküle Festkörper.

Wenn der Abkühlungsprozess langsam geschieht, bildet sich die maximale Anzahl chemischer Bindungen und die Gesamtenergie wird minimal.

Kristallstruktur

Zustandsformen von Materie – Plasma, Gas, Flüssigkeit und Festkörper -

hängen von der Größe

- der Anziehungskräfte zwischen den Teilchen
- und ihrer thermischen Energie ab

Plasma	Gas	Flüssigkeit	Festkörper
freie Elektronen und Kerne; Bindungs- energie << k _B T	ungeordnete Bewegung von Atomen und Molekülen, deren gegenseitige Anziehung << k _B T	Nahordnung, benach- barte Atome/Moleküle ziehen sich an, Anziehung ~ k _B T	Nah- und Fernordnung, Anziehung > k _B T, Ausbildung von Kristallstrukturen

Bei hinreichend niedrigen Temperaturen bilden Atome und Moleküle Festkörper.

Wenn der Abkühlungsprozess langsam geschieht, bildet sich die maximale Anzahl chemischer Bindungen und die Gesamtenergie wird minimal.

Es bilden sich geordnete **Kristall-Gitter**, deren Form durch die Struktur der chemischen Bindungen vorgegeben ist.

Kristallstruktur

Zustandsformen von Materie – Plasma, Gas, Flüssigkeit und Festkörper -

hängen von der Größe

- der Anziehungskräfte zwischen den Teilchen
- und ihrer thermischen Energie ab

Plasma	Gas	Flüssigkeit	Festkörper
freie Elektronen und Kerne; Bindungs- energie << k _B T	ungeordnete Bewegung von Atomen und Molekülen, deren gegenseitige Anziehung << k _B T	Nahordnung, benach- barte Atome/Moleküle ziehen sich an, Anziehung ~ k _B T	Nah- und Fernordnung Anziehung > k _B T, Ausbildung von Kristallstrukturen

Bei hinreichend niedrigen Temperaturen bilden Atome und Moleküle Festkörper.

Wenn der Abkühlungsprozess langsam geschieht, bildet sich die maximale Anzahl chemischer Bindungen und die Gesamtenergie wird minimal.

Es bilden sich geordnete **Kristall-Gitter**, deren Form durch die Struktur der chemischen Bindungen vorgegeben ist.

Gitter: periodische Anordnung von Punkten im 3-dimensionalen Raum

Kristallgitter

Kennzeichen von Kristallgittern: Periodizität

d.h. Symmetrie bei Translation

Symmetrie bestimmt die physikalische Eigenschaften

Kristallgitter

Kennzeichen von Kristallgittern: Periodizität

d.h. Symmetrie bei Translation

Symmetrie bestimmt die physikalische Eigenschaften

- Definition von linear unabhängigen **Basisvektoren** (2 in 2d, 3 in 3d)
- Basisvektoren spannen Elementarzelle (auch Einheitszelle) auf
- Primitive Elementarzelle beinhaltet genau einen Gitterpunkt
- Einfachster Fall:

jeder Gitterpunkt entspricht einem einzigen Atom, alle Atome vom selben Typ

Die Atome in der Elementarzelle

bilden die sog. Basis

- Definition von linear unabhängigen **Basisvektoren** (2 in 2d, 3 in 3d)
- Basisvektoren spannen Elementarzelle (auch Einheitszelle) auf
- Primitive Elementarzelle beinhaltet genau einen Gitterpunkt
- Einfachster Fall:

jeder Gitterpunkt entspricht einem einzigen Atom, alle Atome vom selben Typ

Die Atome in der Elementarzelle bilden die sog. **Basis**

Periodizität

- Wiederholung der Elementarzellen
- Symmetrie bei Translationen um Gittervektor (und Rotationen um bestimmte Winkel)

13

- Definition von linear unabhängigen **Basisvektoren** (2 in 2d, 3 in 3d)
- Basisvektoren spannen Elementarzelle (auch Einheitszelle) auf
- Primitive Elementarzelle beinhaltet genau einen Gitterpunkt
- Einfachster Fall:

jeder Gitterpunkt entspricht einem einzigen Atom, alle Atome vom selben Typ

Die Atome in der Elementarzelle bilden die sog. **Basis**

Periodizität

- Wiederholung der Elementarzellen
- Symmetrie bei Translationen um Gittervektor (und Rotationen um bestimmte Winkel)

Bindungen

- Metallische Bindung
- Ionen-Bindung
- kovalente Bindung

- Definition von linear unabhängigen **Basisvektoren** (2 in 2d, 3 in 3d)
- Basisvektoren spannen Elementarzelle (auch Einheitszelle) auf
- Primitive Elementarzelle beinhaltet genau einen Gitterpunkt
- Einfachster Fall:

jeder Gitterpunkt entspricht einem einzigen Atom, alle Atome vom selben Typ

Die Atome in der Elementarzelle bilden die sog. **Basis**

Periodizität

- Wiederholung der Elementarzellen
- Symmetrie bei Translationen um Gittervektor (und Rotationen um bestimmte Winkel)

Bindungen

- Metallische Bindung
- Ionen-Bindung
- kovalente Bindung

W. Demtröder, Experimentalphysik 3, Springer 2015

Kristall besteht aus Translationsgitter und Basis.

Gittertypen

Gittertypen klassifiziert nach $|\vec{a}_i|$ und $\angle(\vec{a}_i, \vec{a}_j)$: die 14 Bravais-Gitter

Gittertypen

Gittertypen klassifiziert nach $|\vec{a}_i|$ und $\angle(\vec{a}_i, \vec{a}_j)$: die 14 Bravais-Gitter

Kubisches Kristallsystem

- höchste Symmetrie
- drei gleich lange Achsen im 90°-Winkel

Gittertypen

Gittertypen klassifiziert nach $|\vec{a}_i|$ und $\angle(\vec{a}_i, \vec{a}_j)$: die 14 Bravais-Gitter

Kubisches Kristallsystem

- höchste Symmetrie
- drei gleich lange Achsen im 90°-Winkel

(Ortho-) Rhombisches System

- drei 90°-Winkel,
- verschiedene Achsenlängen

Tetragonales Kristallsystem

- zwei gleich lange Achsen im 90°-Winkel

Tetragonales Kristallsystem

- zwei gleich lange Achsen im 90°-Winkel

Hexagonales Kristallsystem

- zwei gleich lange Achsen in einer Ebene unter einem Winkel von 120°
- dritte Achse senkrecht dazu

Trigonales, auch rhomboedrisches System

- drei gleich lange Achsen
- drei gleiche Winkel $\neq 90^{\circ}$

Trigonales, auch rhomboedrisches System

- drei gleich lange Achsen
- − drei gleiche Winkel \neq 90°

Monoklines System

- zwei 90° Winkel
- keine gleich langen Achsen

Trigonales, auch rhomboedrisches System

- drei gleich lange Achsen
- drei gleiche Winkel $\neq 90^{\circ}$

Monoklines System

- zwei 90° Winkel
- keine gleich langen Achsen

Triklines System

- geringste Symmetrie aller Gittertypen
- keine gleichen Winkel
- keine gleich langen Achsen

Beispiel: Einheitszelle des Eisens

Atomium (Brüssel): Einheitszelle Fe

Beispiel: Einheitszelle des Eisens

Atomium (Brüssel): Einheitszelle Fe

kubisch-raumzentriert

Beispiele: Kochsalz und Diamant

Natriumchlord:

2 separate kubisch-flächenzentrierte Gitter für Na⁺ und Cl⁻, um eine halbe Raumdiagonale zueinander verschoben 30

Beispiele: Kochsalz und Diamant

Natriumchlord:

2 separate kubisch-flächenzentrierte Gitter für Na⁺ und Cl⁻, um eine halbe Raumdiagonale zueinander verschoben

Diamant:

Kubisch-flächenzentriertes Gitter mit zweiatomiger Basis aus C-Atomen, 2. Atom um eine viertel Raumdiagonale verschoben

Bestimmung von Gitterebenen

Die Orientierung von Ebenen im Gitter (auch "Netzebenen") wird durch die Miller'schen Indizes angegeben

- Schnittpunkte mit Basisvektoren bestimmen: $S_i = n_i \vec{a}_i$
- Kehrwerte $1/n_i$ auf kleinst ganze Zahl erweitern
 - \rightarrow Miller'sche Indizes m_1, m_2, m_3

Orientierung v. Kristalloberflächen

Physikalische und chemische Eigenschaften der Kristalloberfläche abhängig von Orientierung

- Siliziumbauteile (Chips, Teilchendetektoren): (100) oder (111)
 - \rightarrow mechanische und elektronische Eigenschaften
 - (z. B. Elastizitätsmodul, Mobilität der Ladungsträger, Kapazität, Oberflächenladungen)
- Mineralogie: eindeutige Beschreibung von Kristallflächen
- Elektronen- oder Röntgenbeugung: Beugung an Netzebenenschar(→ Übungen)
- Materialwissenschaften: Gitterebenen und Gittervektoren zur Beschreibung von Gitterfehlern (Versetzungen usw.) in Werkstoffen.

Ein Ion in einem Ionen-Kristall hat eine negative potentielle Energie:

$$E_{\text{pot}}(r) = -\alpha c \cdot \frac{e^2}{r} + \frac{C}{r^n} \quad \text{mit} \ c = \frac{1}{4\pi\epsilon_0}$$

- r ist dabei der Abstand zweier benachbarter Ionen

- der Faktor α ist die "Madelung-Konstante"; er berücksichtigt den Einfluss der weiter entfernten Ionen und die Struktur des Gitters; für kubisch-flächenzentrierte Gitter hat α den Wert 1.74
- der Abstoßungsterm wird als C / r^n parametrisiert

Ein Ion in einem Ionen-Kristall hat eine negative potentielle Energie:

$$E_{\text{pot}}(r) = -\alpha c \cdot \frac{e^2}{r} + \frac{C}{r^n} \quad \text{mit} \, c = \frac{1}{4\pi\epsilon_0}$$

- r ist dabei der Abstand zweier benachbarter Ionen

 der Faktor α ist die "Madelung-Konstante"; er berücksichtigt den Einfluss der weiter entfernten Ionen und die Struktur des Gitters; für kubisch-flächenzentrierte Gitter hat α den Wert 1.74

- der Abstoßungsterm wird als C / r^n parametrisiert

für den Abstand r_0 am Minimum ergibt sich: $r_0^{n-1} = \frac{nC}{\alpha c e^2}$

Ein Ion in einem Ionen-Kristall hat eine negative potentielle Energie:

$$E_{\text{pot}}(r) = -\alpha c \cdot \frac{e^2}{r} + \frac{C}{r^n} \quad \text{mit} \ c = \frac{1}{4\pi\epsilon_0}$$

- r ist dabei der Abstand zweier benachbarter Ionen

 der Faktor α ist die "Madelung-Konstante"; er berücksichtigt den Einfluss der weiter entfernten Ionen und die Struktur des Gitters; für kubisch-flächenzentrierte Gitter hat α den Wert 1.74

- der Abstoßungsterm wird als C / r^n parametrisiert

für den Abstand r_0 am Minimum ergibt sich: $r_0^{n-1} = \frac{n C}{\alpha c e^2}$ $\rightarrow E_{\text{pot}}(r) = -\frac{\alpha e^2}{4\pi\epsilon_0 r_0} \left(\frac{r_0}{r} - \frac{1}{n} \left(\frac{r_0}{r}\right)^n\right)$

Ein Ion in einem Ionen-Kristall hat eine negative potentielle Energie:

$$E_{\text{pot}}(r) = -\alpha c \cdot \frac{e^2}{r} + \frac{C}{r^n} \quad \text{mit} \, c = \frac{1}{4\pi\epsilon_0}$$

- r ist dabei der Abstand zweier benachbarter Ionen

 der Faktor α ist die "Madelung-Konstante"; er berücksichtigt den Einfluss der weiter entfernten Ionen und die Struktur des Gitters; für kubisch-flächenzentrierte Gitter hat α den Wert 1.74

- der Abstoßungsterm wird als C / r^n parametrisiert

für den Abstand r_0 am Minimum ergibt sich: $r_0^{n-1} = \frac{n C}{\alpha c e^2}$ $\rightarrow E_{\text{pot}}(r) = -\frac{\alpha e^2}{4\pi\epsilon_0 r_0} \left(\frac{r_0}{r} - \frac{1}{n} \left(\frac{r_0}{r}\right)^n\right)$ $E_{\text{pot}}(r_0) = -\frac{\alpha e^2}{4\pi\epsilon_0 r_0} \left(1 - \frac{1}{n}\right)$

Ein Ion in einem Ionen-Kristall hat eine negative potentielle Energie:

$$E_{\text{pot}}(r) = -\alpha c \cdot \frac{e^2}{r} + \frac{C}{r^n} \quad \text{mit} \ c = \frac{1}{4\pi\epsilon_0}$$

- r ist dabei der Abstand zweier benachbarter Ionen

 der Faktor α ist die "Madelung-Konstante"; er berücksichtigt den Einfluss der weiter entfernten Ionen und die Struktur des Gitters; für kubisch-flächenzentrierte Gitter hat α den Wert 1.74

- der Abstoßungsterm wird als C / r^n parametrisiert

für den Abstand r_0 am Minimum ergibt sich: $r_0^{n-1} = \frac{n C}{\alpha c e^2}$ $\rightarrow E_{\text{pot}}(r) = -\frac{\alpha e^2}{4\pi\epsilon_0 r_0} \left(\frac{r_0}{r} - \frac{1}{n} \left(\frac{r_0}{r}\right)^n\right)$ $E_{\text{pot}}(r_0) = -\frac{\alpha e^2}{4\pi\epsilon_0 r_0} \left(1 - \frac{1}{n}\right)$

Durch Bestimmung der Energie, die zur Aufspaltung des Kristalls in einzelnen Atome notwendig ist ("Dissoziationsenergie") kann man den Werte des Parameters *n* bestimmen.

Beispiel NaCI: – Dissoziationsenergie 770 kJ/mol

 $\rightarrow U(r_0) = -7.98 \text{ eV}$ (= Dissoziationsenergie pro lonenpaar)

 $-r_0$ kann man aus Dichte ρ und

Mol-Masse M bestimmen:

 $r_0^3 = \frac{M}{2N_A\rho}$

mit $r_0 = 0.282 \text{ nm} \longrightarrow n = 9.35$

Beispiel NaCI: – Dissoziationsenergie 770 kJ/mol

 $\rightarrow U(r_0) = -7.98 \text{ eV}$ (= Dissoziationsenergie pro lonenpaar)

 $-r_0$ kann man aus Dichte p und

Mol-Masse M bestimmen:

$$r_0^3 = \frac{M}{2N_A\rho}$$

mit $r_0 = 0.282$ nm $\rightarrow n = 9.35$

Üblich ist auch eine andere Parametrisierung des

Potentials, das Morse-Potential

 $U(r) = D \cdot (1 - \exp(-a(r - r_0)))$

Beispiel NaCI: – Dissoziationsenergie 770 kJ/mol

 $\rightarrow U(r_0) = -7.98 \text{ eV}$ (= Dissoziationsenergie pro lonenpaar)

 $-r_0$ kann man aus Dichte ρ und

Mol-Masse M bestimmen:

$$r_0^3 = \frac{M}{2N_A\rho}$$

mit $r_0 = 0.282$ nm $\rightarrow n = 9.35$

Üblich ist auch eine andere Parametrisierung des

Potentials, das Morse-Potential

 $U(r) = D \cdot (1 - \exp(-a(r - r_0)))$

Für dieses Potential ist die Schrödingergleichung analytisch lösbar; man erhält die Energien von Vibrationsanregungen:

$$E_n = \hbar\omega_0 \left(n + \frac{1}{2}\right) - \frac{\hbar^2 \omega_0^2}{4D} \cdot \left(n + \frac{1}{2}\right)^2$$

41

Beispiel NaCI: – Dissoziationsenergie 770 kJ/mol

 $\rightarrow U(r_0) = -7.98 \text{ eV}$ (= Dissoziationsenergie pro lonenpaar)

 $-r_0$ kann man aus Dichte ρ und

Mol-Masse M bestimmen:

 $r_0^3 = \frac{M}{2N_A\rho}$

mit $r_0 = 0.282$ nm $\rightarrow n = 9.35$

Üblich ist auch eine andere Parametrisierung des

Potentials, das Morse-Potential

 $U(r) = D \cdot (1 - \exp(-a(r - r_0)))$

Für dieses Potential ist die Schrödingergleichung analytisch lösbar; man erhält die Energien von Vibrationsanregungen:

$$E_n = \hbar\omega_0 \left(n + \frac{1}{2}\right) - \frac{\hbar^2 \omega_0^2}{4D} \cdot \left(n + \frac{1}{2}\right)^2$$

Beispiel NaCI: – Dissoziationsenergie 770 kJ/mol

 $\rightarrow U(r_0) = -7.98 \text{ eV}$ (= Dissoziationsenergie pro lonenpaar)

 $-r_0$ kann man aus Dichte ρ und

Mol-Masse M bestimmen:

 $r_0^3 = \frac{M}{2N_A\rho}$

mit $r_0 = 0.282 \text{ nm} \rightarrow n = 9.35$

Üblich ist auch eine andere Parametrisierung des

Potentials, das Morse-Potential

 $U(r) = D \cdot (1 - \exp(-a(r - r_0)))$

Für dieses Potential ist die Schrödingergleichung analytisch lösbar; man erhält die Energien von Vibrationsanregungen:

$$E_n = \hbar\omega_0 \left(n + \frac{1}{2}\right) - \frac{\hbar^2 \omega_0^2}{4D} \cdot \left(n + \frac{1}{2}\right)^2$$

→ der Abstand der Gitterbausteine nimmt wegen des asymmetrischen Bindungspotentials zu, wenn Gitterschwingungen angeregt werden. Ausdehnung von Körpern mit der Temperatur 43

Ende Vorlesung 15

und Zeit für Fragen?