

Diese Veranstaltung wir aufgezeichnet und als Medien-Cast über KIT - ILIAS bereit gestellt

Nur zur KIT-internen vorlesungsbegleitenden Nutzung, Weitergabe & anderweitige Verwendung ist untersagt

Vorlesung Moderne Physik (L)

Festkörperphysik

Organisatorisches

Bitte die **Anmeldung zur Vorleistung** ("Übungsschein") im Campus-System vornehmen

Prüfungsnummer 7800067

(bisher gibt es erst 26 Anmeldungen)

In der Anmeldung per E-Mail zur Kurseinteilung gab es zum Studiengang zwei mal die Angabe "sonstige".

Bitte an die Betroffenen, per E-Mail Frau Schäfer (daniela.schaefer@kit) und mir (guenter.quast@kit.edu) Information zu Studiengang und Prüfungsmodalitäten zukommen lassen.

Zusammenfassung V15

- Kovalente Bindung
 - Symmetrische Wellenfunktion bei Überlapp führt zu hoher Aufenthaltswahrscheinlichkeit der Elektronen zwischen den Atomen \rightarrow Energieabsenkung \rightarrow Bindung

- Ionenbindung: $A + B + \Delta E \rightarrow A^+ + B^-$ bei unendlichem Abstand
 - Verringerung der Gesamtenergie durch elektrische Anziehung und Abstandsverringerung

Zusammenfassung V15 (2)

 Molekülspektren Rotations- und Vibrationsanregung zusätzlich zu atomaren Niveaus

$$-E_{\text{rot},j} = j(j+1) \cdot B; B = \frac{\hbar^2}{2I}; I = \text{Trägheitsmoment}$$

$$- E_{\text{vib},i} = (i + \frac{1}{2}) \cdot h \nu; \ \nu = \frac{1}{2\pi} \sqrt{\frac{\beta}{\mu}}$$

 β : klassische Rückstellkraft

 μ : reduzierte Masse, $\mu = \frac{m_1 \cdot m_2}{m_1 + m_2}$

Kristallstruktur

Kristall = Translationsgitter + BasisTranslation um Gittervektor

$$\vec{G} = m_1 \vec{a}_1 + m_2 \vec{a}_2 + m_3 \vec{a}_3$$

Nachtrag V15:

Einfachstes Modell: Kugelförmige Objekte in dichtester Anordnung im Raum packen minimales Volumen, d.h. minimale Gesamtenergie

- erste Kugellage (
):

Nachtrag V15:

Einfachstes Modell: Kugelförmige Objekte in dichtester Anordnung im Raum packen minimales Volumen, d.h. minimale Gesamtenergie

- erste Kugellage ():
- zweite Kugellage () in Lücken :

Nachtrag V15:

Einfachstes Modell: Kugelförmige Objekte in dichtester Anordnung im Raum packen minimales Volumen, d.h. minimale Gesamtenergie

- erste Kugellage ():
- zweite Kugellage () in Lücken :

- für die dritte Lage gibt es zwei Möglichkeiten:
 - über der ersten Lage () oder über den Lücken () der ersten Lage

Nachtrag V15:

Einfachstes Modell: Kugelförmige Objekte in dichtester Anordnung im Raum packen minimales Volumen, d.h. minimale Gesamtenergie

- erste Kugellage ():
- zweite Kugellage (O) in Lücken:
- für die dritte Lage gibt es zwei Möglichkeiten: über der ersten Lage () oder über den Lücken () der ersten Lage

- zwei unterschiedliche Gitterstrukturen
 - mit kubischer oder
 - **hexagonaler** Geometrie

Hexagonal dichteste Kugelpackung (hcp). Stapelfolge: ABA...

Dichteste_Kugelpackung nttps://de.wikipedia.org/wiki.

Nachtrag V15:

Einfachstes Modell: Kugelförmige Objekte in dichtester Anordnung im Raum packen minimales Volumen, d.h. minimale Gesamtenergie

- erste Kugellage ():
- zweite Kugellage (O) in Lücken:
- für die dritte Lage gibt es zwei Möglichkeiten: über der ersten Lage () oder über den Lücken () der ersten Lage

- zwei unterschiedliche Gitterstrukturen
 - mit kubischer oder
 - **hexagonaler** Geometrie

Hexagonal dichteste Kugelpackung (hcp). Stapelfolge: ABA...

Dichteste_Kugelpackung nttps://de.wikipedia.org/wiki.

Inhaltsübersicht VL Moderne Physik

- 1) Einführung
- 2) Wiederholung wichtiger Konzepte der klassischen Physik
- 3) Spezielle Relativitätstheorie
- 4) Schlüsselexperimente und Grundlagen der Quantenphysik
- 5) Die Schrödingergleichung
- 6) Anwendungen der Schrödingergleichung
- 7) Das Wasserstoff-Atom
- 8) Atome mit mehreren Elektronen
- 9) Wechselwirkung von Licht und Materie
- 10) Grundlagen der Festkörperphysik
- 11) Kern- und Teilchenphysik
- 12) Ausblick

Kristalle als Beugungsgitter

Zur Klärung der Kristallstruktur dienen

Beugungsexperimente mit Strahlung genügend kleiner Wellenlänge, hauptsächlich Röntgenstrahlung,

aber auch Elektronen (Oberfläche) und Neutronen

Kristalle als Beugungsgitter

Zur Klärung der Kristallstruktur dienen

Beugungsexperimente mit Strahlung genügend kleiner Wellenlänge, hauptsächlich Röntgenstrahlung, aber auch Elektronen (Oberfläche) und Neutronen

Aus Beziehung zwischen Wellenlänge und Impuls $\lambda = h/p$ (für Photonen; auch gültig für Materiewellen, vgl. de Broglie):

$$E = pc = \frac{2\pi \hbar c}{\lambda} = \frac{2\pi}{\lambda} (197 \,\text{MeV fm})$$

10.4

Kristalle als Beugungsgitter

Zur Klärung der Kristallstruktur dienen

Beugungsexperimente mit Strahlung genügend kleiner Wellenlänge, hauptsächlich Röntgenstrahlung, aber auch Elektronen (Oberfläche) und Neutronen

Aus Beziehung zwischen Wellenlänge und Impuls $\lambda = h/p$ (für Photonen; auch gültig für Materiewellen, vgl. de Broglie):

$$E = pc = \frac{2\pi \hbar c}{\lambda} = \frac{2\pi}{\lambda} (197 \,\text{MeV fm})$$

Typische Wellenlänge: Gitterabstand in Größenordnung der Wellenlänge

Kristalle als Beugungsgitter

Zur Klärung der Kristallstruktur dienen

Beugungsexperimente mit Strahlung genügend kleiner Wellenlänge, hauptsächlich Röntgenstrahlung, aber auch Elektronen (Oberfläche) und Neutronen

Aus Beziehung zwischen Wellenlänge und Impuls $\lambda = h/p$ (für Photonen; auch gültig für Materiewellen, vgl. de Broglie):

$$E = pc = \frac{2\pi \hbar c}{\lambda} = \frac{2\pi}{\lambda} (197 \,\text{MeV fm})$$

- Typische Wellenlänge: Gitterabstand in Größenordnung der Wellenlänge
- **2** Zahlenbeispiel: $\lambda = 1 \text{ Å} \rightarrow E = 12.4 \text{ keV}$

Kristalle als Beugungsgitter

Zur Klärung der Kristallstruktur dienen

Beugungsexperimente mit Strahlung genügend kleiner Wellenlänge, hauptsächlich Röntgenstrahlung, aber auch Elektronen (Oberfläche) und Neutronen

Aus Beziehung zwischen Wellenlänge und Impuls $\lambda = h/p$ (für Photonen; auch gültig für Materiewellen, vgl. de Broglie):

$$E = pc = \frac{2\pi \hbar c}{\lambda} = \frac{2\pi}{\lambda} (197 \,\text{MeV fm})$$

- Typische Wellenlänge: Gitterabstand in Größenordnung der Wellenlänge
- Zahlenbeispiel: $\lambda = 1 \text{ Å} \rightarrow E = 12.4 \text{ keV}$

M. von Laue (1912, Nobelpreis 1914):

Röntgenbeugung an Kristallen

→ Nachweis der periodischen Kristallstruktur

M. von Laue

nobelprize.org

Beugung an räumlichen Strukturen (nicht an Oberflächen wie in der Optik üblich)

ebene Welle, Wellenlänge λ

Beugung an räumlichen Strukturen (nicht an Oberflächen wie in der Optik üblich)

Beugung an räumlichen Strukturen (nicht an Oberflächen wie in der Optik üblich)

- betrachten durchgezogene Pfeile:
 - Gangunterschied für Kristallebenen im Abstand d: 2δ = 2d sin θ
 - Bedingung f
 ür konstruktive Interferenz: nλ = 2d sin θ (Bragg-Bedingung)

Beugung an räumlichen Strukturen (nicht an Oberflächen wie in der Optik üblich)

- betrachten durchgezogene Pfeile:
 - Gangunterschied für Kristallebenen im Abstand d: 2δ = 2d sin θ
 - Bedingung f
 ür konstruktive Interferenz: nλ = 2d sin θ (Bragg-Bedingung)
- Einfallswinkel gleich Ausfallswinkel wegen Interferenz benachbarter Streuzentren

Beugung an räumlichen Strukturen (nicht an Oberflächen wie in der Optik üblich)

- betrachten durchgezogene Pfeile:
 - Gangunterschied für Kristallebenen im Abstand d: 2δ = 2d sin θ
 - Bedingung f
 ür konstruktive Interferenz: nλ = 2d sin θ (Bragg-Bedingung)
- Einfallswinkel gleich Ausfallswinkel wegen Interferenz benachbarter Streuzentren (analog zum ebenen Spiegel)

Beugung an räumlichen Strukturen (nicht an Oberflächen wie in der Optik üblich)

- betrachten durchgezogene Pfeile:
 - Gangunterschied für Kristallebenen im Abstand d: 2δ = 2d sin θ
 - Bedingung f
 ür konstruktive Interferenz: nλ = 2d sin θ (Bragg-Bedingung)
- Einfallswinkel gleich Ausfallswinkel wegen Interferenz benachbarter Streuzentren (analog zum ebenen Spiegel)
 - Scharfe Intensitätsmaxima (= Bragg-Reflexe)
 unter Winkeln, die Bragg-Bedingung erfüllen

- es gibt viele Ebenen-Scharen, für die die Bragg-Bedingung erfüllt ist (s. Miller'sche Indizes für Kristrall-Ebenen)
- Verändert man die Orientierung des Kristalls relativ zur einfallenden Röntgenstrahlung, beobachtet man entsprechende Bragg-Reflexe
- es können auch Reflexe höherer Beugungs-Ordnung auftreten

Röntgenbeugung nach Laue

Methode: Bragg-Reflexion an Kristallebenen

Röntgenbeugung nach Laue

Methode: Bragg-Reflexion an Kristallebenen

Verfahren nach Laue:

"Laue-Diagramm"

Röntgenbeugung nach Laue

Methode: Bragg-Reflexion an Kristallebenen

Verfahren nach Laue:

"Laue-Diagramm"

Debye-Scherrer-Verfahren

Verwendung von

- monochromatischer Röntgenstrahlung
- und Kristallpulver (d.h. zufällige Orientierung der Kristalle)

Bragg-Bedingung immer für einige Kristallorientierungen erfüllt

Debye-Scherrer-Verfahren

Verwendung von

- monochromatischer Röntgenstrahlung
- und Kristallpulver (d.h. zufällige Orientierung der Kristalle)

Bragg-Bedingung immer für einige Kristallorientierungen erfüllt

https://www.spektrum.de/lexikon/chemie/roentgenstrukturanalyse/8031

Röntgenbeugung im Praktikumsversuch

Modernes Röntgengerät für Praktika und Schule

- verschiedene Röntgenröhren
- Probenhalter mit Goniometer
- für Geiger-Müller-Zählrohr oder auch Röntgendetektor zur Energiemessung
- Absorptionsfilter zur Erzeugung
 - ~ monochromatischer Röntgenstrahlung

Spektrum einer Molybdän-Anode

Röntgenbeugung im Praktikumsversuch

Modernes Röntgengerät für Praktika und Schule

- verschiedene Röntgenröhren
- Probenhalter mit Goniometer
- für Geiger-Müller-Zählrohr oder auch Röntgendetektor zur Energiemessung
- Absorptionsfilter zur Erzeugung
 - ~ monochromatischer Röntgenstrahlung

Spektrum einer Molybdän-Anode

Röntgenbeugung im Praktikumsversuch

Modernes Röntgengerät für Praktika und Schule

- verschiedene Röntgenröhren
- Probenhalter mit Goniometer
- für Geiger-Müller-Zählrohr oder auch Röntgendetektor zur Energiemessung
- Absorptionsfilter zur Erzeugung
 - ~ monochromatischer Röntgenstrahlung

Röntgenbeugung im Praktikumsversuch (2)

https://www.experimente.physik.uni-freiburg.de/H_Atom_und_Kernphysik/versuchemitelektronenundmateriestrahlen/braggreflexion

Realistische Streuprozesse

In realen Gittern müssen Korrekturen angebracht werden:

- die gestreute Welle ist nicht notwendigerweise eine (isotrope) Kugelwelle, insb. bei Kristallen mit mehratomiger Basis
- thermische Bewegung der Atome
- Beschreibung Intensität der Reflexe
- Auflösen von Ambiguitäten

Wir werden uns "Kristalle als Beugungsgitter" gleich noch genauer anschauen.

Ebene Welle mit Wellenvektor \vec{k} wird von Gitterbausteinen an Orten $\vec{R}_m = m_1 \vec{a}_1 + m_2 \vec{a}_2 + m_3 \vec{a}_3$ elastisch gestreut und am (unendlich) weit entfernten Punkt \vec{r} in Richtung $\vec{k}'/|\vec{k}|$ beobachtet.

Ebene Welle mit Wellenvektor \vec{k} wird von Gitterbausteinen an Orten $\vec{R}_m = m_1 \vec{a}_1 + m_2 \vec{a}_2 + m_3 \vec{a}_3$ elastisch gestreut und am (unendlich) weit entfernten Punkt \vec{r} in Richtung $\vec{k}'/|\vec{k}|$ beobachtet.

Eingestrahlte ebene Welle:

$$A(\vec{R}_m) = A \cdot \exp(i\vec{k} \cdot \vec{R}_m)$$

Ebene Welle mit Wellenvektor \vec{k} wird von Gitterbausteinen an Orten $\vec{R}_m = m_1 \vec{a}_1 + m_2 \vec{a}_2 + m_3 \vec{a}_3$ elastisch gestreut und am (unendlich) weit entfernten Punkt \vec{r} in Richtung $\vec{k}'/|\vec{k}|$ beobachtet.

Eingestrahlte ebene Welle:

$$A(\vec{R}_m) = A \cdot \exp(i\vec{k} \cdot \vec{R}_m)$$

am Gitterpunkt *m* gestreute Kugelwelle:

$$E_m = \frac{A(\vec{R}_m)}{|\vec{r} - \vec{R}_m|} \exp(i\vec{k}' \cdot (\vec{r} - \vec{R}_m))$$

Ebene Welle mit Wellenvektor \vec{k} wird von Gitterbausteinen an Orten $\vec{R}_m = m_1 \vec{a}_1 + m_2 \vec{a}_2 + m_3 \vec{a}_3$ elastisch gestreut und am (unendlich) weit entfernten Punkt \vec{r} in Richtung $\vec{k}'/|\vec{k}|$ beobachtet.

Eingestrahlte ebene Welle:

$$A(\vec{R}_m) = A \cdot \exp(i\vec{k} \cdot \vec{R}_m)$$

am Gitterpunkt m gestreute Kugelwelle:

$$E_m = \frac{A(\vec{R}_m)}{|\vec{r} - \vec{R}_m|} \exp(i\vec{k}' \cdot (\vec{r} - \vec{R}_m))$$

Am Beobachtungspunkt in Richtung $\vec{k}'/|\vec{k}|$ registrierte Gesamtamplitude aller Streuzentren:

$$A(\vec{k}') = \sum_{m} \frac{A}{|\vec{r} - \vec{R}_m|} \exp(i(\vec{k} - \vec{k}') \cdot \vec{R}_m) \exp(i\vec{k}' \cdot \vec{r})$$

$$A(\vec{k}') = \sum_{m} \frac{A}{|\vec{r} - \vec{R}_{m}|} \exp(i(\vec{k} - \vec{k}') \cdot \vec{R}_{m}) \exp(i\vec{k}' \cdot \vec{r})$$
$$= \sum_{m} \frac{A}{|\vec{r} - \vec{R}_{m}|} \exp(\Delta \vec{k} \cdot \vec{R}_{m}) \exp(i\vec{k}' \cdot \vec{r}) \text{ mit } \Delta \vec{k} = \vec{k}' - \vec{k}$$

$$A(\vec{k}') = \sum_{m} \frac{A}{|\vec{r} - \vec{R}_{m}|} \exp(i(\vec{k} - \vec{k}') \cdot \vec{R}_{m}) \exp(i\vec{k}' \cdot \vec{r})$$

$$= \sum_{m} \frac{A}{|\vec{r} - \vec{R}_{m}|} \exp(\Delta \vec{k} \cdot \vec{R}_{m}) \exp(i\vec{k}' \cdot \vec{r}) \quad \text{mit } \Delta \vec{k} = \vec{k}' - \vec{k}$$

$$= \frac{A \exp(i\vec{k}' \cdot \vec{r})}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| >> |\vec{R}_{m}|$$

$$A(\vec{k}') = \sum_{m} \frac{A}{|\vec{r} - \vec{R}_{m}|} \exp(i(\vec{k} - \vec{k}') \cdot \vec{R}_{m}) \exp(i\vec{k}' \cdot \vec{r})$$

$$= \sum_{m} \frac{A}{|\vec{r} - \vec{R}_{m}|} \exp(\Delta \vec{k} \cdot \vec{R}_{m}) \exp(i\vec{k}' \cdot \vec{r}) \text{ mit } \Delta \vec{k} = \vec{k}' - \vec{k}$$

$$= \frac{A \exp(i\vec{k}' \cdot \vec{r})}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| >> |\vec{R}_{m}|$$

$$= \frac{A \exp(ikr)}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| \parallel |\vec{k}| \text{ und } |\vec{k}'| = |\vec{k}|$$

$$A(\vec{k}') = \sum_{m} \frac{A}{|\vec{r} - \vec{R}_{m}|} \exp(i(\vec{k} - \vec{k}') \cdot \vec{R}_{m}) \exp(i\vec{k}' \cdot \vec{r})$$

$$= \sum_{m} \frac{A}{|\vec{r} - \vec{R}_{m}|} \exp(\Delta \vec{k} \cdot \vec{R}_{m}) \exp(i\vec{k}' \cdot \vec{r}) \text{ mit } \Delta \vec{k} = \vec{k}' - \vec{k}$$

$$= \frac{A \exp(i\vec{k}' \cdot \vec{r})}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| >> |\vec{R}_{m}|$$

$$= \frac{A \exp(ikr)}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| \parallel |\vec{k}| \text{ und } |\vec{k}'| = |\vec{k}|$$

$$= \frac{A \exp(ikr)}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| \parallel |\vec{k}| \text{ und } |\vec{k}'| = |\vec{k}|$$

$$= \frac{A \exp(ikr)}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| \parallel |\vec{k}| \text{ und } |\vec{k}'| = |\vec{k}|$$

Am Beobachtungspunkt registrierte Gesamtamplitude:

$$A(\vec{k}') = \sum_{m} \frac{A}{|\vec{r} - \vec{R}_{m}|} \exp(i(\vec{k} - \vec{k}') \cdot \vec{R}_{m}) \exp(i\vec{k}' \cdot \vec{r})$$

$$= \sum_{m} \frac{A}{|\vec{r} - \vec{R}_{m}|} \exp(\Delta \vec{k} \cdot \vec{R}_{m}) \exp(i\vec{k}' \cdot \vec{r}) \text{ mit } \Delta \vec{k} = \vec{k}' - \vec{k}$$

$$= \frac{A \exp(i\vec{k}' \cdot \vec{r})}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| >> |\vec{R}_{m}|$$

$$= \frac{A \exp(ikr)}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| \parallel |\vec{k}| \text{ und } |\vec{k}'| = |\vec{k}|$$

$$= \frac{A \exp(ikr)}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| \parallel |\vec{k}| \text{ und } |\vec{k}'| = |\vec{k}|$$

$$= \frac{A \exp(ikr)}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| \parallel |\vec{k}| \text{ und } |\vec{k}'| = |\vec{k}|$$

das gilt für alle Gittervektoren m, wenn gilt:

$$\begin{array}{l} \Delta \vec{k} \cdot \vec{a}_1 = 2\pi h_1 \\ \Delta \vec{k} \cdot \vec{a}_2 = 2\pi h_2 \\ \Delta \vec{k} \cdot \vec{a}_3 = 2\pi h_3, \quad h_1, h_2, h_3 \in \mathbb{Z} \end{array} \right\} \text{ Laue-Bedingungen}$$

Am Beobachtungspunkt registrierte Gesamtamplitude:

$$A(\vec{k}') = \sum_{m} \frac{A}{|\vec{r} - \vec{R}_{m}|} \exp(i(\vec{k} - \vec{k}') \cdot \vec{R}_{m}) \exp(i\vec{k}' \cdot \vec{r})$$

$$= \sum_{m} \frac{A}{|\vec{r} - \vec{R}_{m}|} \exp(\Delta \vec{k} \cdot \vec{R}_{m}) \exp(i\vec{k}' \cdot \vec{r}) \quad \text{mit } \Delta \vec{k} = \vec{k}' - \vec{k}$$

$$= \frac{A \exp(i\vec{k}' \cdot \vec{r})}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| >> |\vec{R}_{m}|$$

$$= \frac{A \exp(ikr)}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| \parallel |\vec{k}| \text{ und } |\vec{k}'| = |\vec{k}|$$

$$= \frac{A \exp(ikr)}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| \parallel |\vec{k}| \text{ und } |\vec{k}'| = |\vec{k}|$$

$$= \frac{A \exp(ikr)}{|\vec{r}|} \sum_{m} \exp(i\Delta \vec{k} \cdot \vec{R}_{m}) \text{ wegen } |\vec{r}| \parallel |\vec{k}| \text{ und } |\vec{k}'| = |\vec{k}|$$

das gilt für alle Gittervektoren m, wenn gilt:

$$\begin{array}{l} \Delta \vec{k} \cdot \vec{a}_1 = 2\pi h_1 \\ \Delta \vec{k} \cdot \vec{a}_2 = 2\pi h_2 \\ \Delta \vec{k} \cdot \vec{a}_3 = 2\pi h_3, \quad h_1, h_2, h_3 \in \mathbb{Z} \end{array} \right\} \text{ Laue-Bedingungen}$$

Vektoren Δk_h , die die Laue-Bedingung erfüllen, bilden selbst ein Gitter, das sogenannte "Reziproke Gitter"

Vektoren $\Delta \vec{k}_h$, die die Laue-Bedingung erfüllen, bilden selbst ein Gitter, das sogenannte "Reziproke Gitter"

Vektoren $\Delta \vec{k}_h$, die die Laue-Bedingung erfüllen, bilden selbst ein Gitter, das sogenannte "Reziproke Gitter"

Beispiel aus der Optik:

Beugungsmuster eines Kreuzgitters

Vektoren $\Delta \vec{k}_h$, die die Laue-Bedingung erfüllen, bilden selbst ein Gitter, das sogenannte "Reziproke Gitter"

Beispiel aus der Optik:

Beugungsmuster eines Kreuzgitters

Vektoren $\Delta \vec{k}_h$, die die Laue-Bedingung erfüllen, bilden selbst ein Gitter, das sogenannte "Reziproke Gitter"

Beispiel aus der Optik:

Beugungsmuster eines Kreuzgitters

Leybold Dicactic

Vektoren $\Delta \vec{k}_h$, die die Laue-Bedingung erfüllen, bilden selbst ein Gitter, das sogenannte "Reziproke Gitter"

Beispiel aus der Optik:

Beugungsmuster eines Kreuzgitters

Maxima des Beugungsmusters eines Gitters bilden selbst ein Gitter!

Vektoren $\Delta \vec{k}_h$, die die Laue-Bedingung erfüllen, bilden selbst ein Gitter, das sogenannte "Reziproke Gitter"

Beispiel aus der Optik:

Beugungsmuster eines Kreuzgitters

Maxima des Beugungsmusters eines Gitters bilden selbst ein Gitter!

Das Beugungsmuster eines Kristalls bildet das reziproke Gitter!

Pause

und Zeit für Fragen?

Wie in der Optik, so ergibt sich das Beugungsmuster eines Kristalls durch Fourier-Transformation der Intensitätsverteilung am beugenden Objekt.

Das reziproke Gitter ist die Fourier-Transformierte des Ortsgitters in den *k*-Raum:

$$\int d^3x \, \delta^3(\vec{x} - \vec{R}_m) \exp(i \, \vec{K} \cdot \vec{x}) = \sum_m \exp(i K \cdot \vec{R}_m)$$

Bestimmungsgleichung für reziproke Gittervektoren

Wie in der Optik, so ergibt sich das Beugungsmuster eines Kristalls durch Fourier-Transformation der Intensitätsverteilung am beugenden Objekt.

Das reziproke Gitter ist die Fourier-Transformierte des Ortsgitters in den *k*-Raum:

$$\int d^3x \, \delta^3(\vec{x} - \vec{R}_m) \exp(i \, \vec{K} \cdot \vec{x}) = \sum_m \exp(i K \cdot \vec{R}_m)$$

Bestimmungsgleichung für reziproke Gittervektoren

(ohne Herleitung) Das reziproke Gitter hat die Basisvektoren:

$$\vec{b}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{(\vec{a}_1 \times \vec{a}_2) \cdot \vec{a}_3} \qquad \vec{b}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{(\vec{a}_1 \times \vec{a}_2) \cdot \vec{a}_3} \qquad \vec{b}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{(\vec{a}_1 \times \vec{a}_2) \cdot \vec{a}_3}$$

Wie in der Optik, so ergibt sich das Beugungsmuster eines Kristalls durch Fourier-Transformation der Intensitätsverteilung am beugenden Objekt.

Das reziproke Gitter ist die Fourier-Transformierte des Ortsgitters in den *k*-Raum:

$$\int d^3x \, \delta^3(\vec{x} - \vec{R}_m) \exp(i \, \vec{K} \cdot \vec{x}) = \sum_m \exp(i K \cdot \vec{R}_m)$$

Bestimmungsgleichung für reziproke Gittervektoren

(ohne Herleitung) Das reziproke Gitter hat die Basisvektoren:

$$\vec{b}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{(\vec{a}_1 \times \vec{a}_2) \cdot \vec{a}_3} \qquad \vec{b}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{(\vec{a}_1 \times \vec{a}_2) \cdot \vec{a}_3} \qquad \vec{b}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{(\vec{a}_1 \times \vec{a}_2) \cdot \vec{a}_3}$$

Punkt im reziproken Gitter ist beschreiben durch:

$$\vec{G} = h_1 \vec{b}_1 + h_2 \vec{b}_2 + h_3 \vec{b}_3$$
 , $h_1, h_2 \text{ und } h_3$ heißen Laue-Indizes

Wie in der Optik, so ergibt sich das Beugungsmuster eines Kristalls durch Fourier-Transformation der Intensitätsverteilung am beugenden Objekt.

Das reziproke Gitter ist die Fourier-Transformierte des Ortsgitters in den *k*-Raum:

$$\int d^3x \, \delta^3(\vec{x} - \vec{R}_m) \exp(i \, \vec{K} \cdot \vec{x}) = \sum_m \exp(i K \cdot \vec{R}_m)$$

Bestimmungsgleichung für reziproke Gittervektoren

(ohne Herleitung) Das reziproke Gitter hat die Basisvektoren:

$$\vec{b}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{(\vec{a}_1 \times \vec{a}_2) \cdot \vec{a}_3} \qquad \vec{b}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{(\vec{a}_1 \times \vec{a}_2) \cdot \vec{a}_3} \qquad \vec{b}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{(\vec{a}_1 \times \vec{a}_2) \cdot \vec{a}_3}$$

Punkt im reziproken Gitter ist beschreiben durch:

$$\vec{G}=h_1\vec{b}_1+h_2\vec{b}_2+h_3\vec{b}_3$$
 , h_1,h_2 und h_3 heißen Laue-Indizes

Skalarprodukt eines Gittervektors mit einem reziproken Gittervektor:

$$\vec{R} \cdot \vec{G} = 2\pi (m_1 h_1 + m_2 h_2 + m_3 h_3)$$
 wegen $\vec{a}_i \cdot \vec{b}_i = 2\pi \delta_{i,j}$

Als **Elementarzelle des reziproken Gitters** wählt man die Mittelsenkrechten auf den Verbindungen zu allen benachbarten Gitterpunkten im reziproken Gitter. Sie heißt "1. Brillouin-Zone

Als **Elementarzelle des reziproken Gitters** wählt man die Mittelsenkrechten auf den Verbindungen zu allen benachbarten Gitterpunkten im reziproken Gitter. Sie heißt "1. Brillouin-Zone

Als **Elementarzelle des reziproken Gitters** wählt man die Mittelsenkrechten auf den Verbindungen zu allen benachbarten Gitterpunkten im reziproken Gitter. Sie heißt "1. Brillouin-Zone

Mit Hilfe des reziproken Gitters lässt sich die Laue-Bedingung umformulieren: konstruktive Interferenz tritt auf, wenn die Änderung des Wellenzahlvektors einem reziproken Gittervektor entspricht : $\Delta \vec{k} = \vec{G}_h$

Mit Hilfe des reziproken Gitters lässt sich die Laue-Bedingung umformulieren: konstruktive Interferenz tritt auf, wenn die Änderung des Wellenzahlvektors einem reziproken Gittervektor entspricht : $\Delta \vec{k} = \vec{G}_h$

Mit Hilfe des reziproken Gitters lässt sich die Laue-Bedingung umformulieren: konstruktive Interferenz tritt auf, wenn die Änderung des Wellenzahlvektors einem reziproken Gittervektor entspricht : $\Delta \vec{k} = \vec{G}_h$

Kleine Rechnung:
$$\Leftrightarrow \vec{k} - \vec{k}' = \vec{G}$$

Mit Hilfe des reziproken Gitters lässt sich die Laue-Bedingung umformulieren: konstruktive Interferenz tritt auf, wenn die Änderung des Wellenzahlvektors einem reziproken Gittervektor entspricht : $\Delta \vec{k} = \vec{G}_h$

$$\Leftrightarrow \vec{k} - \vec{k}' = \vec{G}$$

$$\Leftrightarrow \vec{k}' = \vec{k} - \vec{G}$$

Mit Hilfe des reziproken Gitters lässt sich die Laue-Bedingung umformulieren: konstruktive Interferenz tritt auf, wenn die Änderung des Wellenzahlvektors einem reziproken Gittervektor entspricht : $\Delta \vec{k} = \vec{G}_h$

$$\Leftrightarrow \vec{k} - \vec{k}' = \vec{G}$$

$$\Leftrightarrow \vec{k}' = \vec{k} - \vec{G}$$

$$\Leftrightarrow \vec{k}'^2 = \vec{k}^2 + \vec{G}^2 - 2\vec{k} \cdot \vec{G}$$

Mit Hilfe des reziproken Gitters lässt sich die Laue-Bedingung umformulieren: konstruktive Interferenz tritt auf, wenn die Änderung des Wellenzahlvektors einem reziproken Gittervektor entspricht : $\Delta \vec{k} = \vec{G}_h$

$$\Leftrightarrow \vec{k} - \vec{k}' = \vec{G}$$

$$\Leftrightarrow \vec{k}' = \vec{k} - \vec{G}$$

$$\Leftrightarrow \vec{k}'^2 = \vec{k}^2 + \vec{G}^2 - 2\vec{k} \cdot \vec{G}$$

$$\Leftrightarrow 0 = \vec{G}^2 - 2\vec{k} \cdot \vec{G} \text{ wegen } |\vec{k}'| = |\vec{k}|$$

Mit Hilfe des reziproken Gitters lässt sich die Laue-Bedingung umformulieren: konstruktive Interferenz tritt auf, wenn die Änderung des Wellenzahlvektors einem reziproken Gittervektor entspricht : $\Delta \vec{k} = \vec{G}_h$

$$\Leftrightarrow \vec{k} - \vec{k}' = \vec{G}$$

$$\Leftrightarrow \vec{k}' = \vec{k} - \vec{G}$$

$$\Leftrightarrow \vec{k}'^2 = \vec{k}^2 + \vec{G}^2 - 2\vec{k} \cdot \vec{G}$$

$$\Leftrightarrow 0 = \vec{G}^2 - 2\vec{k} \cdot \vec{G} \text{ wegen } |\vec{k}'| = |\vec{k}|$$

$$\Leftrightarrow \frac{1}{2}|\vec{G}| = \vec{k} \cdot \frac{\vec{G}}{|\vec{G}|}$$

Mit Hilfe des reziproken Gitters lässt sich die Laue-Bedingung umformulieren: konstruktive Interferenz tritt auf, wenn die Änderung des Wellenzahlvektors einem reziproken Gittervektor entspricht : $\Delta \vec{k} = \vec{G}_h$

Kleine Rechnung:

$$\Leftrightarrow \vec{k} - \vec{k}' = \vec{G}$$

$$\Leftrightarrow \vec{k}' = \vec{k} - \vec{G}$$

$$\Leftrightarrow \vec{k}'^2 = \vec{k}^2 + \vec{G}^2 - 2\vec{k} \cdot \vec{G}$$

$$\Leftrightarrow 0 = \vec{G}^2 - 2\vec{k} \cdot \vec{G} \text{ wegen } |\vec{k}'| = |\vec{k}|$$

$$\Leftrightarrow \frac{1}{2}|\vec{G}| = \vec{k} \cdot \frac{\vec{G}}{|\vec{G}|}$$

→ Hesse'sche Normalenform einer Ebene

Normalenvektor:
$$\frac{\vec{G}}{|\vec{G}|}$$

Abstand vom Ursprung: $\frac{1}{2}|\vec{G}|$

Mit Hilfe des reziproken Gitters lässt sich die Laue-Bedingung umformulieren: konstruktive Interferenz tritt auf, wenn die Änderung des Wellenzahlvektors einem reziproken Gittervektor entspricht : $\Delta \vec{k} = \vec{G}_h$

Kleine Rechnung:

$$\Leftrightarrow \vec{k} - \vec{k}' = \vec{G}$$

$$\Leftrightarrow \vec{k}' = \vec{k} - \vec{G}$$

$$\Leftrightarrow \vec{k}'^2 = \vec{k}^2 + \vec{G}^2 - 2\vec{k} \cdot \vec{G}$$

$$\Leftrightarrow 0 = \vec{G}^2 - 2\vec{k} \cdot \vec{G} \text{ wegen } |\vec{k}'| = |\vec{k}|$$

$$\Leftrightarrow \frac{1}{2}|\vec{G}| = \vec{k} \cdot \frac{\vec{G}}{|\vec{G}|}$$

→ Hesse'sche Normalenform einer Ebene

Normalenvektor: $\frac{\bar{G}}{|\bar{G}|}$

Abstand vom Ursprung: $\frac{1}{2}|\vec{G}|$

d.h.: k-Vektoren, die konstruktiv interferieren, liegen auf dem Rand der Brillouin-Zone

Vergleich: Bragg und Laue-Bedingungen

Laue Bedingung

$$\Delta \vec{k} \cdot \vec{R} = 2\pi n \Leftrightarrow \exp(i\,\Delta \vec{k} \cdot \vec{R}) = 1$$

für bel. Gittervektoren \vec{R}

als Ebenengleichung:

$$\vec{k} \cdot \frac{\vec{G}}{|\vec{G}|} = \frac{1}{2} |\vec{G}|$$

Vergleich: Bragg und Laue-Bedingungen

Einzeichnen von k-Vektoren

Laue Bedingung

$$\Delta \vec{k} \cdot \vec{R} = 2\pi n \Leftrightarrow \exp(i\,\Delta \vec{k} \cdot \vec{R}) = 1$$

für bel. Gittervektoren \vec{R}

als Ebenengleichung:

$$\vec{k} \cdot \frac{\vec{G}}{|\vec{G}|} = \frac{1}{2} |\vec{G}|$$

Bragg-Bedingung

Einzeichnen von k-Vektoren

Laue Bedingung

$$\Delta \vec{k} \cdot \vec{R} = 2\pi n \Leftrightarrow \exp(i\,\Delta \vec{k} \cdot \vec{R}) = 1$$

für bel. Gittervektoren \vec{R}

$$\vec{k} \cdot \frac{\vec{G}}{|\vec{G}|} = \frac{1}{2} |\vec{G}|$$

Bragg-Bedingung

Einzeichnen von k-Vektoren

- man liest aus der Grafik ab: $G_1 = 2k\sin\Theta$

Laue Bedingung

$$\Delta \vec{k} \cdot \vec{R} = 2\pi n \Leftrightarrow \exp(i\,\Delta \vec{k} \cdot \vec{R}) = 1$$

für bel. Gittervektoren \vec{R}

$$\vec{k} \cdot \frac{\vec{G}}{|\vec{G}|} = \frac{1}{2}|\vec{G}|$$

Bragg-Bedingung

Einzeichnen von k-Vektoren

- man liest aus der Grafik ab: $G_1 = 2k\sin\Theta$
- $\Delta \vec{k} = \vec{G}_1$ steht senkrecht auf der Bragg-Ebene

Laue Bedingung

$$\Delta \vec{k} \cdot \vec{R} = 2\pi n \Leftrightarrow \exp(i\,\Delta \vec{k} \cdot \vec{R}) = 1$$

für bel. Gittervektoren \vec{R}

$$\vec{k} \cdot \frac{\vec{G}}{|\vec{G}|} = \frac{1}{2}|\vec{G}|$$

Bragg-Bedingung

Einzeichnen von k-Vektoren

- man liest aus der Grafik ab: $G_1 = 2k\sin\Theta$
- $\Delta \vec{k} = \vec{G}_1$ steht senkrecht auf der Bragg-Ebene
- für einen Vektor des reziproken Gitters gilt $G_1 = 2\pi/d$

Laue Bedingung

$$\Delta \vec{k} \cdot \vec{R} = 2\pi n \Leftrightarrow \exp(i\,\Delta \vec{k} \cdot \vec{R}) = 1$$

für bel. Gittervektoren \vec{R}

$$\vec{k} \cdot \frac{\vec{G}}{|\vec{G}|} = \frac{1}{2} |\vec{G}|$$

Bragg-Bedingung

Einzeichnen von k-Vektoren

- man liest aus der Grafik ab: $G_1 = 2k\sin\Theta$
- $\Delta \vec{k} = \vec{G}_1$ steht senkrecht auf der Bragg-Ebene
- für einen Vektor des reziproken Gitters gilt $G_1 = 2\pi/d$
- mit $k = \pi/\lambda \rightarrow 2d\sin\Theta = \lambda$

Laue Bedingung

$$\Delta \vec{k} \cdot \vec{R} = 2\pi n \Leftrightarrow \exp(i\,\Delta \vec{k} \cdot \vec{R}) = 1$$

für bel. Gittervektoren \vec{R}

$$\vec{k} \cdot \frac{\vec{G}}{|\vec{G}|} = \frac{1}{2} |\vec{G}|$$

Bragg-Bedingung

Einzeichnen von k-Vektoren

- man liest aus der Grafik ab: $G_1 = 2k\sin\Theta$
- $\Delta \vec{k} = \vec{G}_1$ steht senkrecht auf der Bragg-Ebene
- für einen Vektor des reziproken Gitters gilt $G_1 = 2\pi/d$
- mit $k = \pi/\lambda \rightarrow 2d\sin\Theta = \lambda$
- mit Wahl $\vec{G}_n=n\vec{G}_1\to 2d\sin\Theta=n\lambda$, d.h. die Bragg- hergeleitet aus der Laue-Bedingung

Laue Bedingung

$$\Delta \vec{k} \cdot \vec{R} = 2\pi n \Leftrightarrow \exp(i\,\Delta \vec{k} \cdot \vec{R}) = 1$$

für bel. Gittervektoren \vec{R}

$$\vec{k} \cdot \frac{\vec{G}}{|\vec{G}|} = \frac{1}{2}|\vec{G}|$$

Bragg-Bedingung

Einzeichnen von k-Vektoren

- man liest aus der Grafik ab: $G_1 = 2k\sin\Theta$
- $\Delta \vec{k} = \vec{G}_1$ steht senkrecht auf der Bragg-Ebene
- für einen Vektor des reziproken Gitters gilt $G_1 = 2\pi/d$
- mit $k = \pi/\lambda \rightarrow 2d\sin\Theta = \lambda$
- mit Wahl $\vec{G}_n=n\vec{G}_1\to 2d\sin\Theta=n\lambda$, d.h. die Bragg- hergeleitet aus der Laue-Bedingung

Laue Bedingung

$$\Delta \vec{k} \cdot \vec{R} = 2\pi n \Leftrightarrow \exp(i\,\Delta \vec{k} \cdot \vec{R}) = 1$$

für bel. Gittervektoren \vec{R}

als Ebenengleichung:

$$\vec{k} \cdot \frac{\vec{G}}{|\vec{G}|} = \frac{1}{2}|\vec{G}|$$

Bragg- und Laue-Bedingungen sind äqivalent

Jedem Punkt im reziproken Gitter entspricht eine Ebenenschar

Ionen bzw. Basis im Kristall durch Potential gebunden am Minimum gebunden

- → Gitterschwingungen
- für T>0: thermische Bewegung
- Ausbreitung von Wellen (Schallwellen)

Gitterdynamik

Ionen bzw. Basis im Kristall durch Potential gebunden am Minimum gebunden

- → Gitterschwingungen
- für T>0: thermische Bewegung
- Ausbreitung von Wellen (Schallwellen)

https://de.wikipedia.org/wiki/Gitterschwingung

Longitudinale Welle in 2d-Gitter

Einfacher Ansatz zur Beschreibung:

gekoppelte harmonische Oszillatoren

Einfacher Ansatz zur Beschreibung:

gekoppelte harmonische Oszillatoren

- feste Netzebene *s* im Kristall
- Kräfte von allen anderen Netzebenen s±1 s±2, ...

Einfacher Ansatz zur Beschreibung:

gekoppelte harmonische Oszillatoren

- feste Netzebene *s* im Kristall
- Kräfte von allen anderen Netzebenen s±1 s±2, ...

longitudinale Schwingung der Netzebenen (transversal auch möglich)

Einfacher Ansatz zur Beschreibung:

gekoppelte harmonische Oszillatoren

- feste Netzebene *s* im Kristall
- Kräfte von allen anderen Netzebenen s±1 s±2, ...

Auslenkungen $y_{s+n}, n \in \mathbb{Z}$

longitudinale Schwingung der Netzebenen (transversal auch möglich)

Einfacher Ansatz zur Beschreibung:

gekoppelte harmonische Oszillatoren

- feste Netzebene s im Kristall
- Kräfte von allen anderen Netzebenen s±1 s±2, ...

Auslenkungen $y_{s+n}, n \in \mathbb{Z}$

longitudinale Schwingung der Netzebenen (transversal auch möglich)

- vereinfachtes Modell der "linearen Kette"

Einfacher Ansatz zur Beschreibung:

gekoppelte harmonische Oszillatoren

- feste Netzebene s im Kristall
- Kräfte von allen anderen Netzebenen s±1 s±2, ...

Auslenkungen $y_{s+n}, n \in \mathbb{Z}$

longitudinale Schwingung der Netzebenen (transversal auch möglich)

- vereinfachtes Modell der "linearen Kette"

- Bewegungsgleichung $M \ddot{y}_s = \sum D_n \left(y_{s+n} - y_s \right)$

M: Atommasse, $D_{\mathbf{n}}$: "Federkonstante", $n \in \mathbb{Z}$

$$M \ddot{y}_s = \sum_n D_n (y_{s+n} - y_s)$$

$$M \ddot{y}_s = \sum_n D_n \left(y_{s+n} - y_s \right)$$

Lösungsansatz: $y_{s+n} = A \cdot \exp(i(k n a - \omega_k t)) \rightarrow \ddot{y}_{s+n} = -\omega_q^2 \cdot y_{s+n}$

$$M \ddot{y}_s = \sum_n D_n \left(y_{s+n} - y_s \right)$$

Lösungsansatz:
$$y_{s+n}=A\cdot \exp(i(k\,n\,a\,-\,\omega_k\,t))\,\to\,\ddot{y}_{s+n}=-\omega_q^2\cdot y_{s+n}$$
 $\to -\omega_k^2\cdot M=\sum\,D_n\,(\exp(ikna)-1)$

$$M \ddot{y}_s = \sum_n D_n \left(y_{s+n} - y_s \right)$$

Lösungsansatz: $y_{s+n}=A\cdot \exp(i(k\,n\,a\,-\,\omega_k\,t)) \,\to\, \ddot{y}_{s+n}=-\omega_q^2\cdot y_{s+n}$ $\to -\omega_k^2\cdot M=\sum_n D_n\left(\exp(ikna)-1\right)$

mit
$$D_{-n} = D_n \rightarrow = \sum_{n=1}^{\infty} D_n \left(\underbrace{\exp(ikna) + \exp(-ikna)}_{2\cos(kna)} - 2 \right)$$

$$M \ddot{y}_s = \sum_n D_n \left(y_{s+n} - y_s \right)$$

Lösungsansatz: $y_{s+n} = A \cdot \exp(i(k n a - \omega_k t)) \rightarrow \ddot{y}_{s+n} = -\omega_q^2 \cdot y_{s+n}$

$$\rightarrow -\omega_k^2 \cdot M = \sum_n D_n \left(\exp(ikna) - 1 \right)$$

 $\operatorname{mit} \ D_{-n} = D_n \ \to = \sum_{n=1}^{\infty} D_n \left(\underbrace{\exp(ikna) + \exp(-ikna)}_{2\cos(kna)} - 2 \right)$

$$\Rightarrow \omega_k^2 = \frac{2}{M} \sum_{n=1}^{\infty} D_n \left(1 - \cos(k \, n \, a) \right)$$

$$M \ddot{y}_s = \sum_n D_n \left(y_{s+n} - y_s \right)$$

Lösungsansatz: $y_{s+n} = A \cdot \exp(i(k n a - \omega_k t)) \rightarrow \ddot{y}_{s+n} = -\omega_q^2 \cdot y_{s+n}$

$$\rightarrow -\omega_k^2 \cdot M = \sum_n D_n \left(\exp(ikna) - 1 \right)$$

 $\operatorname{mit} \ D_{-n} = D_n \ \to = \sum_{n=1}^{\infty} D_n \left(\underbrace{\exp(ikna) + \exp(-ikna)}_{2cos(kna)} - 2 \right)$

$$\Rightarrow \omega_k^2 = \frac{2}{M} \sum_{n=1}^{\infty} D_n \left(1 - \cos(k \, n \, a) \right)$$

Dispersionsrelation: Frequenz ω_k als Funktion der Wellenzahl k

$$M \ddot{y}_s = \sum_n D_n \left(y_{s+n} - y_s \right)$$

Lösungsansatz: $y_{s+n} = A \cdot \exp(i(k n a - \omega_k t)) \rightarrow \ddot{y}_{s+n} = -\omega_q^2 \cdot y_{s+n}$

$$\rightarrow -\omega_k^2 \cdot M = \sum_{m} D_n \left(\exp(ikna) - 1 \right)$$

 $\operatorname{mit} \ D_{-n} = D_n \ \to = \sum_{n=1}^{\infty} D_n \left(\underbrace{\exp(ikna) + \exp(-ikna)}_{2\cos(kna)} - 2 \right)$

$$\Rightarrow \omega_k^2 = \frac{2}{M} \sum_{n=1}^{\infty} D_n \left(1 - \cos(k \, n \, a) \right)$$

Dispersionsrelation: Frequenz ω_k als Funktion der Wellenzahl k

Näherung: nur Wechselwirkung zwischen nächsten Nachbarn relevant, d.h. n=1

$$\longrightarrow \omega_k^2 = \frac{4D}{M} \sin^2\left(\frac{ka}{2}\right) \quad \text{mit } \sin^2(\mathbf{x}) = \frac{1}{2}(1 - \cos(2\mathbf{x}))$$

grafische Darstellung der Dispersionsrelation

grafische Darstellung der Dispersionsrelation

 $|k| = \frac{\pi}{a}$ ist die größtmögliche Wellenzahl;

transversale Wellen mit $\lambda = 2a$ und $\lambda = 4a$

führen zu gleichen

Auslenkungen

größere entsprächen Auslenkungen an Orten, an denen keine Gitterbausteine sind.

grafische Darstellung der Dispersionsrelation

 $|k| = \frac{\pi}{a}$ ist die größtmögliche Wellenzahl;

transversale Wellen mit $\lambda = 2a$ und $\lambda = 4a$

führen zu gleichen Auslenkungen

größere entsprächen Auslenkungen an Orten, an denen keine Gitterbausteine sind.

$$\rightarrow$$
 $|k| > \pi/a$ führt zu gleichen Auslenkungen wie $k' = k \pm 2\pi/a, \ k' \in [-\pi/a, \ \pi/a]$

Erinnerung: Phasengeschwindigkeit $v_p = \omega/k$ Gruppengeschwindigkeit $v_g = \mathrm{d}\omega/\mathrm{d}k$

Erinnerung: $\frac{\pi}{\alpha}$ ist der Rand der Brillouin-Zone;

Wellen erfüllen Bragg-Bedingung und werden vollständig reflektiert

→ stehende Welle

Erinnerung: Phasengeschwindigkeit $v_p = \omega/k$ Gruppengeschwindigkeit $v_g = \mathrm{d}\omega/\mathrm{d}k$

- d. h. (I) lineare Dispersion für $|k| \ll \pi/a$ (Schallwelle)
 - (II) stehende Welle für $|k| = \pi/a$

Erinnerung: $\frac{\pi}{\alpha}$ ist der Rand der Brillouin-Zone;

Wellen erfüllen Bragg-Bedingung und werden vollständig reflektiert

→ stehende Welle

Erinnerung: Phasengeschwindigkeit $v_p = \omega/k$ Gruppengeschwindigkeit $v_g = \mathrm{d}\omega/\mathrm{dk}$

- d. h. (I) lineare Dispersion für $|k| \ll \pi/a$ (Schallwelle)
 - (II) stehende Welle für $|k| = \pi/a$

Erinnerung: $\frac{\pi}{a}$ ist der Rand der Brillouin-Zone;

Wellen erfüllen Bragg-Bedingung und werden vollständig reflektiert

→ stehende Welle

 Θ O O O O

 $\odot \ \odot \ \odot \ \odot \ \odot$

 $oldsymbol{\Theta}$ $oldsymbol{\Theta}$ $oldsymbol{\Theta}$ $oldsymbol{\Theta}$

 \odot \odot \odot \odot \odot

 Θ O O O O

Bei Kristallen mit (mindestens)

zweiatomiger Basis ist eine weitere

Form der Anregung möglich:

Diese Form der Anregung nennt man "optische Schwingungsmoden"; sie treten zusätzlich zu den eben behandelten akustischen Schwingungsmoden auf.

- Bei Kristallen mit (mindestens)

 Zweiatomiger Basis ist eine weitere

 DO ⊕ O ⊕ O ⊕ O

 Form der Anregung möglich:
- Ladungsunterschiede führen zu

entgegengesetzten Kräften in einem elektrischen Feld

Diese Form der Anregung nennt man "optische Schwingungsmoden"; sie treten zusätzlich zu den eben behandelten akustischen Schwingungsmoden auf.

- 0
- - Bei Kristallen mit (mindestens)
- zweiatomiger Basis ist eine weitere Form der Anregung möglich:

Ladungsunterschiede führen zu entgegengesetzten Kräften in einem elektrischen Feld

Diese Form der Anregung nennt man "optische Schwingungsmoden"; sie treten zusätzlich zu den eben behandelten akustischen Schwingungsmoden auf.

zweiatomiger Basis ist eine weitere

- 0

Ladungsunterschiede führen zu entgegengesetzten Kräften in einem elektrischen Feld

Bei Kristallen mit (mindestens)

Form der Anregung möglich:

Diese Form der Anregung nennt man "optische Schwingungsmoden"; sie treten zusätzlich zu den eben behandelten akustischen Schwingungsmoden auf.

- Θ O O O O
- Bei Kristallen mit (mindestens)
- \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
- zweiatomiger Basis ist eine weitere
- Form der Anregung möglich:

Ladungsunterschiede führen zu entgegengesetzten Kräften in einem elektrischen Feld

Diese Form der Anregung nennt man "optische Schwingungsmoden"; sie treten zusätzlich zu den eben behandelten akustischen Schwingungsmoden auf.

→ zusätzlicher "optischer Zweig" im Diagramm der Dispersionsrelation

Gitterschwingungen: Dispersionsrelation

Gitterschwingungen: Dispersionsrelation

Im optischen Zweig ist $\omega(k) \simeq \mathrm{const.}$ (d.h. ~stehende Wellen)

Gitterschwingungen: Dispersionsrelation

Im optischen Zweig ist $\omega(k) \simeq {\rm const.}$ (d.h. ~stehende Wellen)

Weitere Schwingungsmoden (akustisch longitudinal und transversal) und Anisotropien führen zu weiteren Zweigen bei realen Kristallen!

Gitterschwingungen quantenmechanisch

Quantenmechanische Betrachtung:

- harmonischer Oszillator ist quantisiert
 - → "Phononen" = Quanten der Gitterschwingung (Bosonen)

Energie und **Impuls** der Phononen: $E=\hbar\omega,\,p=\hbar k$

aber: keine Bewegung des Kristalls, "Quasi-Impuls", "Quasi-Teilchen"

Gitterschwingungen quantenmechanisch

Quantenmechanische Betrachtung:

- harmonischer Oszillator ist quantisiert
 - → "Phononen" = Quanten der Gitterschwingung (Bosonen)

Energie und **Impuls** der Phononen: $E = \hbar\omega, p = \hbar k$

aber: keine Bewegung des Kristalls, "Quasi-Impuls", "Quasi-Teilchen"

Das Konzept des **Phonons**

- beschreibt die Änderung des Schwingungszustands des Gitters durch
 - Aufnahme
 - oder Abgabe

eines (Quasi-)-Teilchens.

Anregung von Gitterschwingungen durch Photonen als Teilchenwechselwirkung:

Photon-Phonon-Wechselwirkung

Gitterschwingungen quantenmechanisch

Quantenmechanische Betrachtung:

- harmonischer Oszillator ist quantisiert
 - → "Phononen" = Quanten der Gitterschwingung (Bosonen)

Energie und **Impuls** der Phononen: $E = \hbar\omega, p = \hbar k$

aber: keine Bewegung des Kristalls, "Quasi-Impuls", "Quasi-Teilchen"

Das Konzept des **Phonons**

- beschreibt die Änderung des Schwingungszustands des Gitters durch
 - Aufnahme
 - oder Abgabeeines (Quasi-)-Teilchens.
- Anregung von Gitterschwingungen durch Photonen als Teilchenwechselwirkung:
 - Photon-Phonon-Wechselwirkung

Reale Dispersionskurven

In realen (3d-) Gittern muss die Richtung angeben werden, entlang derer die Wellenzahl variiert

Erste Brillouin-Zone eines fcc-Gitters; die Struktur des reziproken Gitters ist bcc.

Dispersionskurven entlang verschiedener Richtungen in der Brillouin-Zone eines Silizium-Kristalls (numerische Modellierung mit experimentellen Daten)

Richtungen:

de.wikipedia.org/wiki/Brillouin-Zone

Γ: Zentrum der Brillouin-Zone

L: Zentrum einer hexagonalen Fläche

X: Zentrum einer quadratischen Fläche

W: Eckpunkt

K: Kantenmitte

Ende Vorlesung 15

und Zeit für Fragen?