

Diese Veranstaltung wir aufgezeichnet und als Medien-Cast über KIT - ILIAS bereit gestellt

Nur zur KIT-internen vorlesungsbegleitenden Nutzung, Weitergabe & anderweitige Verwendung ist untersagt

Vorlesung 21 Moderne Physik (L)

Experimentelle Methoden der Kernphysik

Günter Quast

Fakultät für Physik Institut für Experimentelle Teilchenphysik SS '20

Vorlesungsevaluation

Vom 29. Juni bis 3. Juli können Sie an einer Online- Umfrage zur Vorlesung und zu den Übungen teilnehmen.

Dazu diese Links verwenden

Vorlesungsevaluation

Evaluation der Übungen für LA

oder Evaluation der Übungen für Geo/Met

(die gleichen Links finden Sie auf der Ilias-Seite der Vorlesung)

Das Übungs-Team und ich bitten um rege Teilnahme!

Zusammenfassung Vorlesung 20

- Atomkern hat 10^{-15} des Volumens, aber fast die gesamte Masse des Atoms $\left(\frac{\sum m_e}{M_{Kern}} \approx 5 \cdot 10^{-4}\right)$
- Kern besteht aus Z
 Protonen und N Neutronen
 - Proton: Ladung +e, Spin $\frac{1}{2}$
 - Neutron: Ladung 0, Spin $\frac{1}{2}$
- Bezeichnung: ${}^{A}_{Z}X$

-A = Z + N

- $A \propto R^3$ (Masse \propto Radius^3 \propto Volumen) \Rightarrow Kernmaterie hat konstante Dichte
- Nicht alle Kerne sind stabil, Zerfall folgt "exponentiellem Zerfallsgesetz" $N(t) = N_0 \cdot e^{-\frac{t}{\tau}}$
 - $\ N_0:$ Zahl der Kerne beit=0
 - $\tau :$ Lebensdauer

- Halbwertszeit:
$$N(t_{\frac{1}{2}}) = \frac{1}{2}N_0 \Rightarrow t_{\frac{1}{2}} = \tau \cdot \ln 2$$

- Zerfallsrate: $r(t) = \frac{-dN}{dt} = N_0 \cdot \frac{1}{\tau}e^{-\frac{t}{\tau}}$

Inhaltsübersicht VL Moderne Physik

1) Einführung

- 2) Wiederholung wichtiger Konzepte der klassischen Physik
- 3) Spezielle Relativitätstheorie
- 4) Schlüsselexperimente und Grundlagen der Quantenphysik
- 5) Die Schrödingergleichung
- 6) Anwendungen der Schrödingergleichung
- 7) Das Wasserstoff-Atom
- 8) Atome mit mehreren Elektronen
- 9) Wechselwirkung von Licht und Materie
- 10) Grundlagen der Festkörperphysik
- 11) Kernphysik
- 12) Teilchenphysik
- 13) Astrophysik und Kosmologie

Neutronen aus des kosmischen Höhenstrahlung wandeln mit konstanter Rate Stickstoff in Kohlenstoff um: ^{14}N +n \rightarrow ^{14}C + p

Durch massenspektroskopische Bestimmung des ¹⁴C-Anteils oder Messung der Zerfallsrate kann das Alter von organischen Proben bestimmt werden.

Neutronen aus des kosmischen Höhenstrahlung wandeln mit konstanter Rate Stickstoff in Kohlenstoff um: ^{14}N +n \rightarrow ^{14}C + p

- das Verhältnis der Anteile der Isotope 14 C und 12 C beträgt etwa 1.2 $\cdot 10^{-12}$
- -¹⁴C ist instabil und zerfällt mit einer Halbwertszeit von t_C = 5715 ± 30 Jahren:

 $^{14}C \rightarrow {}^{14}N + e^- + \overline{v}$

Durch massenspektroskopische Bestimmung des ¹⁴C-Anteils oder Messung der Zerfallsrate kann das Alter von organischen Proben bestimmt werden.

Neutronen aus des kosmischen Höhenstrahlung wandeln mit konstanter Rate Stickstoff in Kohlenstoff um: ^{14}N +n \rightarrow ^{14}C + p

- das Verhältnis der Anteile der Isotope 14 C und 12 C beträgt etwa 1.2 \cdot 10⁻¹²
- ¹⁴C ist instabil und zerfällt mit einer Halbwertszeit von t_C = 5715 ± 30 Jahren: ¹⁴C \rightarrow ¹⁴N + e⁻ + \overline{v}

Über den Stoffwechsel nehmen Lebewesen Kohlenstoff auf und bauen ihn in organisches Material ein. Das Verhältnis der Anteile von ¹⁴C und ¹²C entspricht recht genau dem Verhältnis in Luft.

Durch massenspektroskopische Bestimmung des ¹⁴C-Anteils oder Messung der Zerfallsrate kann das Alter von organischen Proben bestimmt werden.

Neutronen aus des kosmischen Höhenstrahlung wandeln mit konstanter Rate Stickstoff in Kohlenstoff um: ^{14}N +n \rightarrow ^{14}C + p

- das Verhältnis der Anteile der Isotope ^{14}C und ^{12}C beträgt etwa 1.2 $\cdot 10^{-12}$
- ¹⁴C ist instabil und zerfällt mit einer Halbwertszeit von $t_c = 5715 \pm 30$ Jahren:

 $^{14}C \rightarrow {}^{14}N + e^- + \overline{v}$

Über den Stoffwechsel nehmen Lebewesen Kohlenstoff auf und bauen ihn in organisches Material ein. Das Verhältnis der Anteile von ¹⁴C und ¹²C entspricht recht genau dem Verhältnis in Luft.

Wenn der Stoffwechsel endet, findet kein Austausch mehr statt; ¹⁴C zerfällt und das Verhältnis ändert sich mit der Zeit:

$$\frac{N(^{14}C)}{N(^{12}C)}(t) = \left(\frac{N(^{14}C)}{N(^{12}C)}\right)_{\text{Luft}} \cdot \exp{-t/\tau_C} \quad \text{mit } \tau_C = t_C / \ln 2$$

Durch massenspektroskopische Bestimmung des ¹⁴C-Anteils oder Messung der Zerfallsrate

kann das Alter von organischen Proben bestimmt werden.

Die Nuklidkarte

https://de.wikipedia.org/wiki/Nuklidkarte

Die Nuklidkarte

Mit wachsender Massenzahl Z+N werden Konfigurationen mit Neutron-Überschuss günstiger
 Zerfälle führen zum "Tal der Stabilität" (die schwarze Linie)

Ausschnitte aus der Karlsruher Nuklidkarte

Die Nuklidkarte (berühmt: die Karlsruher Nuklidkarte aus der Zeit, als es noch das "Kernforschungszentrum Karlsruhe" gab) enthält noch viel mehr Information zu jedem Kern:

Be 9,01218 σ 0,0092	chemisches Symbol Masse in AME gemittelt über alle \uparrow radioaktiven Isotope Z Einfangquerschnitt σ für			О 15,9994 о 0,000270			O 13 8,9 ms β ⁺ 1,9 (p 1,44 6,44; 0,93)	Ο 14 70,59 s ^{β+} 1,8; 4,1 γ 2313	Ο 15 2,03 m ^{β⁺1,7} n σγ	Ο 16 99,756 σ 0,000178	Nachard	
H 2 0,015	rot: stabile Massenzah Isotopenhä	rot: stabile Isotope 7 Massenzahl A 7 Isotopenhäufigkeit in %			Ν 14,0067 _{σ_{abs} 1,85}			Ν 12 11,0 ms ^{β+} 16,4 γ 4439 (σ ~ 1,6; 2,8)	N 13 9,96 m ^{β⁺} 1,2 n σ γ	Ν 14 99,64 ^{σ 0,075} σ _{n,p} 1,81	Ν 15 0,36 σ 0,000024	ICK AUS K
H 3 12,346 a mittlere Lebensdauer				6	C 12,011 σ _{abs} 0,0034	C 9 126,5 ms β 3,5 (p 8,24; 10,92)	C 10 19,3 s β ⁺ 1,9 γ718, 1022	C 11 20,3 m ^{β 1,0} n σ γ	C 12 98,89 σ 0,0034	C 13 1,11 σ 0,0009	C 14 5736 a ^{β 0,2} ^{n σ γ}	arisruhe
β 0,02	Energie der emittierten β , γ in MeV, n = Neutronenemitter p = Protonenemitter 5				Β 10,81 _{σ_{abs} 759}	B 8 762 ms ^{β 14,1} (2σ~1,68,3)	В9	B 10 20 σ 0,5 σ _{n,p} 3836	Β 11 80 σ 0,0005	B 12 20,3 ms β 13,4 γ 4439 (σ 0,2)	B 13 17,33 ms ^{β13,4 γ 3684} (σ 3,6; 2,4)	r Nukliak
	4	Ве 9,01218 о 0,0092				Be 7 53,4 d γ 478 σ _{n,p} 48000	Be 8 2σ 0,05	Be 9 100 σ 0,0092	Be 10 1,6 ·10 ⁶ a ^{β 0,6} ^{η σγ}	Be 11 13,8 s β11,5 γ 2125 6791 (σ)	Be 12 11,4 ms ^{β 11,7} (σ)	(arte, De
	3	Li 6,941 σ 70,7			Li 5	Li 6 7,5 σ 0,028 σ _{n,p} 940	Li 7 92,5 σ 0,037	Li 8 844 ms β 12,5 (2n ~ 1,6)	Li 9 176 ms β 11,0; 13,5 (n 0,7)		Li 11 9,7 ms ^{β ~ 18}	mtroder,
2		He 4,00260 σ _{abs} < 0,05		He 3 0,0001 σ 0,00006 σ _{n,p} 5327	He 4 3 99,99987 σ 0	He 5	He 6 802 ms β 3,5	He 7	He 8 122 ms $\beta_{\gamma} \sim 10$ γ 981 (n)			Physik 4
	1	Η 1,0079 σ 0,332	Η 1 99,985 σ 0,332	Η 2 0,015 σ 0,00053	Η 3 12,346 a ^{β 0,02}			1	1	ir	nsg. >4()00 optholtop
			$N \rightarrow$	1	2	3	4	5	6	7	8 NUKIIQE	enthalten

Zerfallsreihen

Schwere Kerne zerfallen sukzessive in leichtere Kerne;

es entstehen sog. **Zerfallsreihen**, die ihren Ausgang bei langlebigen, Isotopen in der Erdkruste haben. Die Reihen sind nach den häufigsten Isotopen benannt:

²³⁸U (a)
 ²³⁵U (b)
 ²³²Th (c)
 ²³⁷Np (d)

80

82

84

86

88

90

92

94

Zerfallsreihen

Schwere Kerne zerfallen sukzessive in leichtere Kerne;

es entstehen sog. Zerfallsreihen, die ihren Ausgang bei langlebigen, Isotopen in der Erdkruste haben. Die Reihen sind nach den häufigsten Isotopen benannt:

²³⁸U (a)
 ²³⁵U (b)
 ²³²Th (c)
 ²³⁷Np (d)

Verwendung zur
 Altersbestimmung
 von Gesteinen

3.1 min

82

84

86

88

90

92

200

80

z

96

Die in den Zerfallsreihen auftretenden Neutrinos aus β -Zerfällen mit E_v >1.8 MeV können in modernen (großen) Detektoren nachgewiesen werden:

14

Reaktion $\nu + p \rightarrow n + e^+$, dann Reaktionen mit Detektormaterial $-e^+ + e^- \rightarrow \gamma \gamma$ $-n + p \rightarrow {}^2\text{H} + \gamma$

 \rightarrow klare Signatur mit kurz nacheinander eintreffenden γ -Signalen

Die in den Zerfallsreihen auftretenden Neutrinos aus β -Zerfällen mit E_v >1.8 MeV können in modernen (großen) Detektoren nachgewiesen werden:

15

Reaktion $\nu + p \rightarrow n + e^+$, dann Reaktionen mit Detektormaterial $-e^+ + e^- \rightarrow \gamma \gamma$ $-n + p \rightarrow {}^2\text{H} + \gamma$

 \rightarrow klare Signatur mit kurz nacheinander eintreffenden γ -Signalen

Im Januar 2020 berichtete das **Borexino-Experiment** nach fast 10 Jahren Datennahme über die Beobachtung von **53 "Geoneutrinos" aus der**²³⁸U- und ²³²Th - Reihe

Die in den Zerfallsreihen auftretenden Neutrinos aus β -Zerfällen mit E_v >1.8 MeV können in modernen (großen) Detektoren nachgewiesen werden:

16

Reaktion $\nu + p \rightarrow n + e^+$, dann Reaktionen mit Detektormaterial $-e^+ + e^- \rightarrow \gamma \gamma$ $-n + p \rightarrow {}^2\text{H} + \gamma$

 \rightarrow klare Signatur mit kurz nacheinander eintreffenden γ -Signalen

Im Januar 2020 berichtete das **Borexino-Experiment** nach fast 10 Jahren Datennahme über die Beobachtung von **53 "Geoneutrinos" aus der**²³⁸U- und ²³²Th - Reihe

Die Neutrino-Reaktionen im Detektor sind extrem selten

→ es muss eine große Menge Material beitragen

Die in den Zerfallsreihen auftretenden Neutrinos aus β -Zerfällen mit E_v >1.8 MeV können in modernen (großen) Detektoren nachgewiesen werden:

17

Reaktion $\nu + p \rightarrow n + e^+$, dann Reaktionen mit Detektormaterial $-e^+ + e^- \rightarrow \gamma \gamma$ $-n + p \rightarrow {}^2\text{H} + \gamma$

 \rightarrow klare Signatur mit kurz nacheinander eintreffenden γ -Signalen

Im Januar 2020 berichtete das **Borexino-Experiment** nach fast 10 Jahren Datennahme über die Beobachtung von **53 "Geoneutrinos" aus der**²³⁸U- und ²³²Th - Reihe

Die Neutrino-Reaktionen im Detektor sind extrem selten

 \rightarrow es muss eine große Menge Material beitragen

Abschätzung der durch

Radioaktivität in der Erde erzeugten Leistung: 38^{+14}_{-13} TW

Die in den Zerfallsreihen auftretenden Neutrinos aus β -Zerfällen mit E_v >1.8 MeV können in modernen (großen) Detektoren nachgewiesen werden:

18

Reaktion $\nu + p \rightarrow n + e^+$, dann Reaktionen mit Detektormaterial $-e^+ + e^- \rightarrow \gamma \gamma$ $-n + p \rightarrow {}^2\text{H} + \gamma$

 \rightarrow klare Signatur mit kurz nacheinander eintreffenden γ -Signalen

Im Januar 2020 berichtete das **Borexino-Experiment** nach fast 10 Jahren Datennahme über die Beobachtung von **53 "Geoneutrinos" aus der**²³⁸U- und ²³²Th - Reihe

Die Neutrino-Reaktionen im Detektor sind extrem selten

 \rightarrow es muss eine große Menge Material beitragen

Abschätzung der durch

Radioaktivität in der Erde erzeugten Leistung: 38^{+14}_{-13} TW

Radioaktive Prozesse stellen damit einen erheblichen Beitrag zur Energie, die Plattentektonik, Vulkanismus, Erdbeben und das Erdmagnetfeld antreibt !

Uran-Blei-Methode zur Altersbestimmung von Gesteinen

Uran-Blei-Methode zur Altersbestimmung von Gesteinen

Uran-Blei-Methode zur Altersbestimmung von Gesteinen

$$238 \text{U} \underbrace{\longrightarrow}_{t_{1/2}=4.5 \cdot 10^9 a} \dots 206 \text{Pb}$$
Alter aus $\frac{N_{\text{Pb}}(t)}{N_{\text{U}}(t)}$ massenspektroskopische Bestimmung

Voraussetzung: beim Aufschmelzen des Gesteins wurden U und Pb getrennt

("Nullsetzen der nuklearen Uhr")

$$\rightarrow N_{\rm U}(t) = N_{\rm U}^0 \exp{-\frac{t}{\tau}} \qquad N_{\rm Pb}(t) = N_{\rm U}^0 - N_{\rm U}(t)$$

Uran-Blei-Methode zur Altersbestimmung von Gesteinen

$$\overset{238}{\underbrace{\mathrm{U}}} \underbrace{\xrightarrow{}}_{t_{1/2}=4.5\cdot10^{9}a} \cdots \overset{206}{\operatorname{Pb}}$$

Alter aus $\frac{N_{\rm Pb}(t)}{N_{\rm U}(t)}$ massenspektroskopische Bestimmung

Voraussetzung: beim Aufschmelzen des Gesteins wurden U und Pb getrennt

("Nullsetzen der nuklearen Uhr")

$$\rightarrow N_{\rm U}(t) = N_{\rm U}^0 \exp{-\frac{t}{\tau}} \qquad N_{\rm Pb}(t) = N_{\rm U}^0 - N_{\rm U}(t) \Rightarrow t = \frac{t_{1/2}}{\ln 2} \cdot \ln\left(1 + \frac{N_{\rm Pb}(t)}{N_{\rm U}(t)}\right) \quad \text{mit } \tau = \frac{t_{1/2}}{\ln 2}$$

Uran-Blei-Methode zur Altersbestimmung von Gesteinen

$$\overset{238}{\underbrace{\mathrm{U}}} \underbrace{\longrightarrow}_{t_{1/2}=4.5\cdot10^9 a} \dots \overset{206}{\operatorname{Pb}}$$

Alter aus $\frac{N_{\rm Pb}(t)}{N_{\rm U}(t)}$ massenspektroskopische Bestimmung

Voraussetzung: beim Aufschmelzen des Gesteins wurden U und Pb getrennt

$$\rightarrow N_{\mathrm{U}}(t) = N_{\mathrm{U}}^{0} \exp{-\frac{t}{\tau}} \qquad N_{\mathrm{Pb}}(t) = N_{\mathrm{U}}^{0} - N_{\mathrm{U}}(t)$$
$$\Rightarrow t = \frac{t_{1/2}}{\ln 2} \cdot \ln\left(1 + \frac{N_{\mathrm{Pb}}(t)}{N_{\mathrm{U}}(t)}\right) \quad \text{mit } \tau = \frac{t_{1/2}}{\ln 2}$$

■ alternativ: ${}^{235}\text{U} \xrightarrow[t_{1/2}=7.1\cdot10^8 a]{} \cdots {}^{206}\text{Pb}$ liefert Überprüfung

Uran-Blei-Methode zur Altersbestimmung von Gesteinen

238
U $\xrightarrow{}_{t_{1/2}=4.5\cdot10^9a}$... 206 Pb

Alter aus $\frac{N_{\rm Pb}(t)}{N_{\rm U}(t)}$ massenspektroskopische Bestimmung

Voraussetzung: beim Aufschmelzen des Gesteins wurden U und Pb getrennt

$$\rightarrow N_{\rm U}(t) = N_{\rm U}^0 \exp{-\frac{t}{\tau}} \qquad N_{\rm Pb}(t) = N_{\rm U}^0 - N_{\rm U}(t)$$

$$\Rightarrow t = \frac{t_{1/2}}{\ln 2} \cdot \ln\left(1 + \frac{N_{\rm Pb}(t)}{N_{\rm U}(t)}\right) \quad \text{mit } \tau = \frac{t_{1/2}}{\ln 2}$$

- alternativ: ²³⁵U $\xrightarrow{\rightarrow}$... ²⁰⁶Pb liefert Überprüfung $t_{1/2} = 7.1 \cdot 10^8 a$
- Kalium-Argon-Methode: ${}^{40}\mathrm{K} \underbrace{\underbrace{\overset{11\%}{\overbrace{}}}_{t_{1/2}=1.28\cdot10^9 a} \ldots {}^{40}\mathrm{Ar}$

Uran-Blei-Methode zur Altersbestimmung von Gesteinen

238
U $\xrightarrow{}_{t_{1/2}=4.5\cdot10^9a}$... 206 Pb

Alter aus $\frac{N_{\rm Pb}(t)}{N_{\rm U}(t)}$ massenspektroskopische Bestimmung

Voraussetzung: beim Aufschmelzen des Gesteins wurden U und Pb getrennt

$$\rightarrow N_{\rm U}(t) = N_{\rm U}^0 \exp{-\frac{t}{\tau}} \qquad N_{\rm Pb}(t) = N_{\rm U}^0 - N_{\rm U}(t)$$
$$\Rightarrow t = \frac{t_{1/2}}{\ln 2} \cdot \ln\left(1 + \frac{N_{\rm Pb}(t)}{N_{\rm U}(t)}\right) \quad \text{mit } \tau = \frac{t_{1/2}}{\ln 2}$$

alternativ: ²³⁵U $\xrightarrow{\rightarrow}$... ²⁰⁶Pb liefert Überprüfung
 $t_{1/2}=7.1\cdot10^8a$ Kalium-Argon-Methode: ⁴⁰K $\xrightarrow{11\%}$... ⁴⁰Ar

 $t_{1/2} = 1.28 \cdot 10^9 a$

→ Alter der Erde 4.7 Milliarden Jahre !

11.6

Zum weiteren Verständnis der "Kernmaterie" brauchen wir noch mehr Information:

Was ist die Struktur der Kernmaterie ?

- 1. Größe, d.h. Volumen von Kernen
- 2. die genauen Massen von Kernen

Wie stark sind Nukleonen im Kern gebunden ?

3. Bindungsenergien verschiedener Kerne

11.6

Zum weiteren Verständnis der "Kernmaterie" brauchen wir noch mehr Information:

Was ist die Struktur der Kernmaterie ?

- 1. Größe, d.h. Volumen von Kernen
- 2. die genauen Massen von Kernen

Wie stark sind Nukleonen im Kern gebunden ?

3. Bindungsenergien verschiedener Kerne

Weil die Bindungsenergien sehr groß (einige %) im Vergleich zur Kernmasse sind, reicht hier die Antwort auf die 2. Frage:

$$E_b(^A_Z X) = \left(\underbrace{N \cdot m_n + Z \cdot m_p - m_{^AX}}_{Z}\right) \cdot c^2$$

Massendefekt

11.6

Zum weiteren Verständnis der "Kernmaterie" brauchen wir noch mehr Information:

Was ist die Struktur der Kernmaterie ?

- 1. Größe, d.h. Volumen von Kernen
- 2. die genauen Massen von Kernen

Wie stark sind Nukleonen im Kern gebunden ?

3. Bindungsenergien verschiedener Kerne

Weil die Bindungsenergien sehr groß (einige %) im Vergleich zur Kernmasse sind, reicht hier die Antwort auf die 2. Frage:

$$E_b(^A_Z X) = \left(\underbrace{N \cdot m_n + Z \cdot m_p - m_{^AZ} }_{Z} \right) \cdot c^2$$

Massendefekt

Zwei wichtige Messverfahren zur

Messung von Kernmassen und Massendefekt: Massenspektrometer Messung der Kerngröße: Streuexperiment

Messverfahren 2: Massenspektrometer

Prinzip: analog e/m – Bestimmung eines Elektronenstrahls

Ionisieren einer Probe
Beschleunigung in elektrischem Feld
Ablenkung in Magnetfeld
→ Ablenkwinkel (bzw. Auftreffort)
hängt vom Verhältnis Ze/m ab.

Messverfahren 2: Massenspektrometer

Prinzip: analog e/m – Bestimmung eines Elektronenstrahls

Ionisieren einer Probe
Beschleunigung in elektrischem Feld
Ablenkung in Magnetfeld
→ Ablenkwinkel (bzw. Auftreffort)

hängt vom Verhältnis Ze/m ab.

es gibt auch andere Verfahren:

- Flugzeitmessung,
- elektrische Quadrupol-Wechselfelder,
- lonenfalle …

Messverfahren 2: Massenspektrometer

Prinzip: analog e/m – Bestimmung eines Elektronenstrahls

Ionisieren einer Probe **Beschleunigung** in elektrischem Feld Ablenkung in Magnetfeld \rightarrow Ablenkwinkel (bzw. Auftreffort)

hängt vom Verhältnis Ze/m ab.

es gibt auch andere Verfahren:

- Flugzeitmessung,
- elektrische Quadrupol-Wechselfelder,
- Ionenfalle ...

Heute routinemäßig eingesetzt zur Bestimmung der Isotopenzusammensetzung von Proben

Bindungsenergie von Kernen (aus Massendefekt) ³²

Bindungsenergien (2)

Bindungsenergien (2)

und Zeit für Fragen?

Messverfahren 2: Streuexperiment

Prinzip:

Teilchenstrahl

mit Wellenlänge im Bereich der aufzulösenden Struktur

$$\lambda = \frac{h}{p} = \frac{2\pi\hbar c}{pc} = \frac{2\pi \,197\,\mathrm{MeV\,f}}{pc} \simeq \frac{1\,\mathrm{GeV\,f}}{pc}$$

triff auf eine Anzahl Target-Teilchen

und wird daran gestreut.

Prinzip:

Teilchenstrahl

mit Wellenlänge im Bereich der aufzulösenden Struktur

$$\lambda = \frac{h}{p} = \frac{2\pi\hbar c}{pc} = \frac{2\pi \,197\,\mathrm{MeV\,f}}{pc} \simeq \frac{1\,\mathrm{GeV\,f}}{pc}$$

triff auf eine Anzahl Target-Teilchen

und wird daran gestreut.

Die in verschiedene Richtungen gestreuten Teilchen werden gezählt \rightarrow differentieller Wirkungsquerschnitt

Erzeugung von Teilchenstrahung

Lorentzkraft:
$$\vec{F}_{L} = q(\vec{E} + \vec{v} \times \vec{B})$$

- Beschleunigung geladener Teilchen durch elektrische Felder
- Ablenkung geladener Teilchen durch Magnetfelder

Erzeugung von Teilchenstrahung

Lorentzkraft:
$$ec{F}_{ extsf{L}} = q(ec{E} + ec{v} imes ec{B})$$

- Beschleunigung geladener Teilchen durch elektrische Felder
- Ablenkung geladener Teilchen durch Magnetfelder

Energiegewinn nur durch elektrische Felder :

$$\Delta E = \int\limits_{s_0}^{s_0+d} ec{\mathcal{F}}_{\mathsf{L}} \cdot \mathsf{d}ec{s} = q \int\limits_{s_0}^{s_0+d} ec{\mathcal{E}} \cdot \mathsf{d}ec{s} = q U$$

Beschleunigungsspannung von 1 V entspricht einem Energeigewinn von 1 eV

Erzeugung von Teilchenstrahung

Lorentzkraft:
$$ec{F}_{ extsf{L}} = q(ec{E} + ec{v} imes ec{B})$$

- Beschleunigung geladener Teilchen durch elektrische Felder
- Ablenkung geladener Teilchen durch Magnetfelder

Energiegewinn nur durch elektrische Felder :

CERN AC - Z34 va - V13/3/98

40

Der Van de Graaff-Beschleuniger

1930 begann Van de Graaff mit der Entwicklung eines Hochspannungsgenerators.

Erzeugung von Teilchenstrahlung

Historisch: elektrostatische Beschleuniger

In den 1930ger Jahren: bis zu 4 MeV, Pulse von 100 mA und ~1µs Dauer

source: lecture on Accelerator Physics by Anke-Susanne Müller

Grenzen elektrostatischer Beschleuniger

Die Grenze von Hochspannungsanlagen liegt bei einigen Millionen Volt. Die Anlagen werden für höhere Energie immer aufwendendiger, und bei höherer Spannung kommt es zu Funkenüberschlägen.

Vorschlag von Ising 1924 :

schnell wechselnde **Hochfrequenzspannung** statt Gleichspannung zur Beschleunigung benutzen.

Wideröe 1928 testet erfolgreich den ersten Linearbeschleuniger, der auf diesem Prinzip beruht.

Linearbeschleuniger

... die erste Stufe jedes modernen Beschleunigers

- Teilchen von der Quelle werden im Potential der ersten Driftröhre beschleunigt
- Spannung wir umgekehrt, wenn die Teilchen in der ersten Röhre sind
- nach Verlassen der Driftröhre verlassen werden Teilchen in Richtung der nächsten beschleunigt
- die Länge der Röhren wird entsprechend der steigenden Geschwindigkeit größer

Linearbeschleuniger

Kreisbeschleuniger

In einem Ring können die Beschleunigungsstrecken bei jedem Umlauf genutzt werden:

- 1. Teilchenquelle
- 2. evakuiertes Strahlrohr
- 3. Magnete

- 4. elektrische (Wechsel-)Felder
- 5. Target(s)
- 6. Detektoren

Lorentzkraft auf Teilchen

$$\vec{F} = q \cdot \vec{v} \times \vec{B}$$

Für Bewegung senkrecht zum B-Feld:

→ Kreisbewegung des Teilchens mit Lorenztkraft als Zentripetalkraft

 $qvB = mv^2/R \to qpB = p^2/R$

Lorentzkraft auf Teilchen

$$\vec{F} = q \cdot \vec{v} \times \vec{B}$$

Für Bewegung senkrecht zum B-Feld:

→ Kreisbewegung des Teilchens

mit Lorenztkraft als Zentripetalkraft

$$qvB = mv^2/R \rightarrow qpB = p^2/R \rightarrow R = \frac{p}{qB}$$

m

Lorentzkraft auf Teilchen

$$\vec{F} = q \cdot \vec{v} \times \vec{B}$$

Für Bewegung senkrecht zum B-Feld:

→ Kreisbewegung des Teilchens mit Lorenztkraft als Zentripetalkraft

$$qvB = mv^2/R \rightarrow qpB = p^2/R \rightarrow R = \frac{p}{qB}$$

Die vom B-Feld abhängige **Umlauffrequenz** nennt man **Zyklotronfrequenz**:

$$\omega_Z = 2\pi f = 2\pi \frac{v}{2\pi R} = \frac{p}{m} \frac{|q|B}{p} = \frac{|q|B}{m}$$

Lorentzkraft auf Teilchen

$$\vec{F} = q \cdot \vec{v} \times \vec{B}$$

Für Bewegung senkrecht zum B-Feld:

→ Kreisbewegung des Teilchens mit Lorenztkraft als Zentripetalkraft

$$qvB = mv^2/R \rightarrow qpB = p^2/R \rightarrow R = \frac{p}{qB}$$

Die vom B-Feld abhängige **Umlauffrequenz** nennt man **Zyklotronfrequenz**:

$$\omega_Z = 2\pi f = 2\pi \frac{v}{2\pi R} = \frac{p}{m} \frac{|q|B}{p} = \frac{|q|B}{m}$$

s. Praktikum: e/m-Röhre

Lorentzkraft auf Teilchen

$$\vec{F} = q \cdot \vec{v} \times \vec{B}$$

Für Bewegung senkrecht zum B-Feld:

→ Kreisbewegung des Teilchens mit Lorenztkraft als Zentripetalkraft

 $qvB = mv^2/R \rightarrow qpB = p^2/R \rightarrow R = \frac{p}{aB}$

Die vom B-Feld abhängige **Umlauffrequenz** nennt man **Zyklotronfrequenz**:

$$\omega_Z = 2\pi f = 2\pi \frac{v}{2\pi R} = \frac{p}{m} \frac{|q|B}{p} = \frac{|q|B}{m}$$

Bei zunehmender Energie und Geschwindigkeit laufen die Teilchen mit größerem Radius im Magnetfeld um

s. Praktikum: e/m-Röhre

Kreisbeschleuniger: Zyklotron

Zyklotron ist ein einfacher, robuster Beschleunigertyp

für Energien größer als einige 10MeV für Protonen wird der notwendige Radius zu groß

Kreisbeschleuniger: Synchrotron

In modernen Kreisbeschleunigern wird das **Magnetfeld** proportional ("**synchron**") **zum Teilchenimpuls erhöht**.

Außerdem nutzt man **Magnetoptik** (Quadrupole und Sextupole) zur Fokussierung des Teilchenstrahls.

Komponenten eines Synchrotrons: Ablenkmagnete Magnete zur Fokussierung Injektionsmagnete (gepulst) Extraktionsmagnete (gepulst) Beschleunigungsstrecke Vakuumsystem Diagnostik Kontrollsystem Netzgeräte

Beispiele

Stanford Linear Accelerator

Large Hadron Collider, CERN in Genf

Streuexperiment: Wirkungsquerschnitt

56

Target

Prinzip: als ebene Welle beschriebener einfallender Teilchenstrahl triff auf eine Anzahl Target-Teilchen und wird daran gestreut. Die in verschiedene Richtungen gestreuten Teilchen werden gezählt

→ differentieller Wirkungsquerschnitt

Parameter des Targets

- Dicke: d (in cm)
- Dichte: ρ (in g/cm³)
- Atommasse: M_t (in atomarer Masseneinheit u)
- Anzahldichte der Targetkerne: $n_t = \rho \cdot N_A / M_t$ (mit Avogadro-Konstante: $N_A = 6.022 \cdot 1023$)
- Anzahl Targetkerne im Strahl: $N_t = n_t \cdot A \cdot d$

 $d\Omega$

Parameter des Targets

- Dicke: d (in cm)
- Dichte: ρ (in g/cm³)
- Atommasse: M_t (in atomarer Masseneinheit u)
- Anzahldichte der Targetkerne: $n_t = \rho \cdot N_A / M_t$ (mit Avogadro-Konstante: $N_A = 6.022 \cdot 1023$)

59

Anzahl Targetkerne im Strahl: Nt = nt·A·d

Wirkungsquerschnitt: Wahrscheinlichkeit für Streuprozess

 $d\sigma$ Zahl der pro Targetkern nach d Ω gestreuten Teilchen

Zahl der einfallenden Teilchen pro Fläche

 $d\Omega$

Parameter des Targets

- Dicke: d (in cm)
- Dichte: ρ (in g/cm³)
- Atommasse: M_t (in atomarer Masseneinheit u)
- Anzahldichte der Targetkerne: $n_t = \rho \cdot N_A / M_t$ (mit Avogadro-Konstante: $N_A = 6.022 \cdot 1023$)
- Anzahl Targetkerne im Strahl: Nt = nt·A·d

Wirkungsquerschnitt: Wahrscheinlichkeit für Streuprozess

 $d\sigma$ Zahl der pro Targetkern nach d Ω gestreuten Teilchen

Zahl der einfallenden Teilchen pro Fläche

Erinnerung: Einheit des Wirkungsquerschnitts: $[\sigma] = 1$ barn = 10^{-28} m²

60

 $d\Omega$

Parameter des Targets

- Dicke: d (in cm)
- Dichte: ρ (in g/cm³)
- Atommasse: M_t (in atomarer Masseneinheit u)
- Anzahldichte der Targetkerne: $n_t = \rho \cdot N_A / M_t$ (mit Avogadro-Konstante: $N_A = 6.022 \cdot 1023$)
- Anzahl Targetkerne im Strahl: $N_t = n_t \cdot A \cdot d$

Wirkungsquerschnitt: Wahrscheinlichkeit für Streuprozess

 $d\sigma$ Zahl der pro Targetkern nach d Ω gestreuten Teilchen

Zahl der einfallenden Teilchen pro Fläche

Erinnerung: Einheit des Wirkungsquerschnitts: $[\sigma] = 1$ barn = 10^{-28} m²

In der Quantenphysik beschreibt der Wirkungsquerschnitt eine effektive Fläche. Er ist ein Maß für die Streuwahrscheinlichkeit.

61

Der Wirkungsquerschnitt für die Reaktion $p + {}^{56} Fe \rightarrow {}^{56} Co + n$ beträgt 0.65 b

Dicke des Eisentargets: $d = 2.0 \ \mu m$,Fläche des Targets: $A = 2.5 \ cm^2$ Dichte: $\rho_{Fe} = 7.8 \ \cdot 10^3 \ kg/m^3$ Molmasse von Eisen: $M_{Fe} = 56 \ g/mol$ Protonrate: $r_p = 2 \ \cdot 10^{13}/s$

Der Wirkungsquerschnitt für die Reaktion $p + {}^{56}Fe \rightarrow {}^{56}Co + n$ beträgt 0.65 b

Dicke des Eisentargets: $d = 2.0 \ \mu m$,Fläche des Targets: $A = 2.5 \ cm^2$ Dichte: $\rho_{Fe} = 7.8 \cdot 10^3 \ kg/m^3$ Molmasse von Eisen: $M_{Fe} = 56 \ g/mol$ Protonrate: $r_p = 2 \cdot 10^{13}/s$

Wie viele Neutronen entstehen pro Sekunde?

rschnitt⁶⁴

Der Wirkungsquerschnitt für die Reaktion $p + {}^{56}Fe \rightarrow {}^{56}Co + n$ beträgt 0.65 b

Dicke des Eisentargets: $d = 2.0 \ \mu m$,Fläche des Targets: $A = 2.5 \ cm^2$ Dichte: $\rho_{Fe} = 7.8 \ \cdot 10^3 \ kg/m^3$ Molmasse von Eisen: $M_{Fe} = 56 \ g/mol$ Protonrate: $r_p = 2 \ \cdot 10^{13}/s$

Wie viele Neutronen entstehen pro Sekunde?

 $r_{\rm n} = \sigma \cdot r_{\rm p} / A \cdot A \cdot d \cdot N_{\rm Fe} \text{ und } N_{\rm Fe} = \rho_{\rm Fe} / M_{\rm Fe} \cdot N_A$

Der Wirkungsquerschnitt für die Reaktion $p + {}^{56}Fe \rightarrow {}^{56}Co + n$ beträgt 0.65 b

Dicke des Eisentargets: $d = 2.0 \ \mu m$,Fläche des Targets: $A = 2.5 \ cm^2$ Dichte: $\rho_{Fe} = 7.8 \ \cdot 10^3 \ kg/m^3$ Molmasse von Eisen: $M_{Fe} = 56 \ g/mol$ Protonrate: $r_p = 2 \ \cdot 10^{13}/s$

Wie viele Neutronen entstehen pro Sekunde?

$$r_{\rm n} = \sigma \cdot r_{\rm p} / A \cdot A \cdot d \cdot N_{\rm Fe} \text{ und } N_{\rm Fe} = \rho_{\rm Fe} / M_{\rm Fe} \cdot N_A$$

= 0.65 \cdot 10^{-28} m^2 \cdot 2 \cdot 10^{13} / s \cdot 2.0 \cdot 10^{-6} m \cdot 8.4 \cdot 10^{28} / m^3

Der Wirkungsquerschnitt für die Reaktion $p + {}^{56}Fe \rightarrow {}^{56}Co + n$ beträgt 0.65 b

Dicke des Eisentargets: $d = 2.0 \ \mu m$,Fläche des Targets: $A = 2.5 \ cm^2$ Dichte: $\rho_{Fe} = 7.8 \ \cdot 10^3 \ kg/m^3$ Molmasse von Eisen: $M_{Fe} = 56 \ g/mol$ Protonrate: $r_p = 2 \ \cdot 10^{13}/s$

Wie viele Neutronen entstehen pro Sekunde?

$$r_{\rm n} = \sigma \cdot r_{\rm p} / A \cdot A \cdot d \cdot N_{\rm Fe} \text{ und } N_{\rm Fe} = \rho_{\rm Fe} / M_{\rm Fe} \cdot N_A$$
$$= 0.65 \cdot 10^{-28} \,\mathrm{m}^2 \cdot 2 \cdot 10^{13} / \mathrm{s} \cdot 2.0 \cdot 10^{-6} \,\mathrm{m} \cdot 8.4 \cdot 10^{28} / \,\mathrm{m}^3 = 2.2 \cdot 10^8 / \mathrm{s}^4$$

Der Wirkungsquerschnitt für die Reaktion $p + {}^{56}Fe \rightarrow {}^{56}Co + n$ beträgt 0.65 b

Dicke des Eisentargets: $d = 2.0 \ \mu m$,Fläche des Targets: $A = 2.5 \ cm^2$ Dichte: $\rho_{Fe} = 7.8 \ \cdot 10^3 \ kg/m^3$ Molmasse von Eisen: $M_{Fe} = 56 \ g/mol$ Protonrate: $r_p = 2 \ \cdot 10^{13}/s$

Wie viele Neutronen entstehen pro Sekunde?

$$r_{\rm n} = \sigma \cdot r_{\rm p} / A \cdot A \cdot d \cdot N_{\rm Fe} \text{ und } N_{\rm Fe} = \rho_{\rm Fe} / M_{\rm Fe} \cdot N_A$$
$$= 0.65 \cdot 10^{-28} \,\mathrm{m}^2 \cdot 2 \cdot 10^{13} / \mathrm{s} \cdot 2.0 \cdot 10^{-6} \,\mathrm{m} \cdot 8.4 \cdot 10^{28} / \,\mathrm{m}^3 = 2.2 \cdot 10^8 / \mathrm{s}^4$$

Weitere Beispiele:

Proton-Proton am LHC bei 3.5 TeV: $\sigma_{\rm pp} = 50 \, {\rm mb}$

Der Wirkungsquerschnitt für die Reaktion $p + {}^{56}Fe \rightarrow {}^{56}Co + n$ beträgt 0.65 b

Dicke des Eisentargets: $d = 2.0 \ \mu m$,Fläche des Targets: $A = 2.5 \ cm^2$ Dichte: $\rho_{Fe} = 7.8 \ \cdot 10^3 \ kg/m^3$ Molmasse von Eisen: $M_{Fe} = 56 \ g/mol$ Protonrate: $r_p = 2 \ \cdot 10^{13}/s$

Wie viele Neutronen entstehen pro Sekunde?

$$r_{\rm n} = \sigma \cdot r_{\rm p} / A \cdot A \cdot d \cdot N_{\rm Fe} \text{ und } N_{\rm Fe} = \rho_{\rm Fe} / M_{\rm Fe} \cdot N_A$$
$$= 0.65 \cdot 10^{-28} \,\mathrm{m}^2 \cdot 2 \cdot 10^{13} / \mathrm{s} \cdot 2.0 \cdot 10^{-6} \,\mathrm{m} \cdot 8.4 \cdot 10^{28} / \,\mathrm{m}^3 = 2.2 \cdot 10^8 / \mathrm{s}^4$$

Weitere Beispiele:

Proton-Proton am LHC bei 3.5 TeV: $\sigma_{\rm pp} = 50 \, {\rm mb}$

Elektron-Positron bei 45GeV: $\sigma_{e^+e^- \rightarrow \mu^+\mu^-} = 1.4 \text{ nb}$

Der Wirkungsquerschnitt für die Reaktion $p + {}^{56}Fe \rightarrow {}^{56}Co + n$ beträgt 0.65 b

Dicke des Eisentargets: $d = 2.0 \ \mu m$,Fläche des Targets: $A = 2.5 \ cm^2$ Dichte: $\rho_{Fe} = 7.8 \ \cdot 10^3 \ kg/m^3$ Molmasse von Eisen: $M_{Fe} = 56 \ g/mol$ Protonrate: $r_p = 2 \ \cdot 10^{13}/s$

Wie viele Neutronen entstehen pro Sekunde?

$$r_{\rm n} = \sigma \cdot r_{\rm p} / A \cdot A \cdot d \cdot N_{\rm Fe} \text{ und } N_{\rm Fe} = \rho_{\rm Fe} / M_{\rm Fe} \cdot N_A$$
$$= 0.65 \cdot 10^{-28} \,\mathrm{m}^2 \cdot 2 \cdot 10^{13} / \mathrm{s} \cdot 2.0 \cdot 10^{-6} \,\mathrm{m} \cdot 8.4 \cdot 10^{28} / \,\mathrm{m}^3 = 2.2 \cdot 10^8 / \mathrm{s}^4$$

Weitere Beispiele:

Proton-Proton am LHC bei 3.5 TeV: $\sigma_{pp} = 50 \text{ mb}$ Elektron-Positron bei 45GeV: $\sigma_{e^+e^- \rightarrow \mu^+\mu^-} = 1.4 \text{ mb}$ LHC bei 7 TeV, Higgs-Erzeugung: $\sigma_{ppH+x} = 10 \text{ pb}$

Der Wirkungsquerschnitt für die Reaktion $p + {}^{56}Fe \rightarrow {}^{56}Co + n$ beträgt 0.65 b

Dicke des Eisentargets: $d = 2.0 \ \mu m$,Fläche des Targets: $A = 2.5 \ cm^2$ Dichte: $\rho_{Fe} = 7.8 \cdot 10^3 \ kg/m^3$ Molmasse von Eisen: $M_{Fe} = 56 \ g/mol$ Protonrate: $r_p = 2 \cdot 10^{13}/s$

Wie viele Neutronen entstehen pro Sekunde?

$$r_{\rm n} = \sigma \cdot r_{\rm p} / A \cdot A \cdot d \cdot N_{\rm Fe} \text{ und } N_{\rm Fe} = \rho_{\rm Fe} / M_{\rm Fe} \cdot N_A$$
$$= 0.65 \cdot 10^{-28} \,\mathrm{m}^2 \cdot 2 \cdot 10^{13} / \mathrm{s} \cdot 2.0 \cdot 10^{-6} \,\mathrm{m} \cdot 8.4 \cdot 10^{28} / \,\mathrm{m}^3 = 2.2 \cdot 10^8 / \mathrm{s}^3$$

Weitere Beispiele:

Proton-Proton am LHC bei 3.5 TeV: $\sigma_{pp} = 50 \text{ mb}$ Elektron-Positron bei 45GeV: $\sigma_{e^+e^- \rightarrow \mu^+\mu^-} = 1.4 \text{ mb}$ LHC bei 7 TeV, Higgs-Erzeugung: $\sigma_{ppH+x} = 10 \text{ pb}$ Neutrinos von der Sonne: $\sigma_{\nu,Kern} = 10^{-21} \text{ b}$

Betrachtung ganz analog zur Streuung am Gitter (s. Vorl. 16)

Ebene Welle mit Wellenvektor \vec{k} wird von Streuzentren an Orten \vec{R} elastisch gestreut und am (unendlich) weit entfernten Punkt \vec{r} in Richtung $\vec{k}'/|\vec{k}|$ beobachtet.

Eingestrahlte ebene Welle: $A(\vec{R}) = A \cdot \exp(i\vec{k} \cdot \vec{R})$

Rutherford-Streuung an jedem Volumenelement, d.h. Überlagerung aller Streuprozesse.

Betrachtung ganz analog zur Streuung am Gitter (s. Vorl. 16)

Ebene Welle mit Wellenvektor \vec{k} wird von Streuzentren an Orten \vec{R} elastisch gestreut und am (unendlich) weit entfernten Punkt \vec{r} in Richtung $\vec{k}'/|\vec{k}|$ beobachtet.

Eingestrahlte ebene Welle: $A(\vec{R}) = A \cdot \exp(i\vec{k} \cdot \vec{R})$

Rutherford-Streuung an jedem Volumenelement, d.h. Überlagerung aller Streuprozesse.

Betrachtung ganz analog zur Streuung am Gitter (s. Vorl. 16)

Ebene Welle mit Wellenvektor \vec{k} wird von Streuzentren an Orten \vec{R} elastisch gestreut und am (unendlich) weit entfernten Punkt \vec{r} in Richtung $\vec{k}'/|\vec{k}|$ beobachtet.

Eingestrahlte ebene Welle: $A(\vec{R}) = A \cdot \exp(i\vec{k} \cdot \vec{R})$

Rutherford-Streuung an jedem Volumenelement, d.h. Überlagerung aller Streuprozesse.
Messverfahren 2: Streuexperiment (3)

Betrachtung ganz analog zur Streuung am Gitter (s. Vorl. 16)

Ebene Welle mit Wellenvektor \vec{k} wird von Streuzentren an Orten \vec{R} elastisch gestreut und am (unendlich) weit entfernten Punkt \vec{r} in Richtung $\vec{k}'/|\vec{k}|$ beobachtet.

Eingestrahlte ebene Welle: $A(\vec{R}) = A \cdot \exp(i\vec{k} \cdot \vec{R})$

Rutherford-Streuung an jedem Volumenelement, d.h. Überlagerung aller Streuprozesse.

Wie seinerzeit beim Gitter erhalten wir mit $|\vec{r}| \parallel |\vec{k}'| \text{ und } |\vec{k}'| = |\vec{k}|$ für den Wirkungsquerschnitt

Wirkungsqeuerschnitt Elektron-Kernstreuung 75

Formfaktor |F(Δp)|² aus Streuung von e[−] mit 750 MeV Energie an ¹⁶O-Kernen

Wirkungsqeuerschnitt Elektron-Kernstreuung ⁷⁶

Formfaktor |F(Δp)|² aus Streuung von e⁻ mit 750 MeV Energie an ¹⁶O-Kernen

Wirkungsqeuerschnitt Elektron-Kernstreuung 77

Formfaktor |F(Δp)|² aus Streuung von e[−] mit 750 MeV Energie an ¹⁶O-Kernen

Einige Verteilungen und deren Fourier-Transformierte

Bethge, Walter, Wiedemann, Kernphysik, Springer 2008

Ladungsverteilung aus Fourier-Transformation

Mit Elektronenstreuung bestimmte radiale Ladungsdichteverteilungen einiger Kerne (nach R. Hofstadter: Ann. Rev. Nucl. Sci. 7, 231 (1957))

Ergebnisse der Streuexperimente mit Elektronen:

Ladungsverteilung im Kern hat einen "diffusen" Rand

 \rightarrow Breite der Ladungsverteilung als "Kernradius"

 $R_{\rm m}$: mittlerer Radius $R_m = \sqrt{\langle r^2 \rangle}$

 $R_{\frac{1}{2}}$: Radius bei halber Höhe

 $R_{\rm K}$: Radius einer Kugel mit konstanter Massendichte $R_K = \sqrt{5/3} \cdot R_m$

Ergebnisse der Streuexperimente mit Elektronen:

Ladungsverteilung im Kern hat einen "diffusen" Rand

 \rightarrow Breite der Ladungsverteilung als "Kernradius"

 $R_{\rm m}$: mittlerer Radius $R_m = \sqrt{\langle r^2
angle}$

 $R_{\frac{1}{2}}$: Radius bei halber Höhe

 $R_{\rm K}$: Radius einer Kugel mit konstanter Massendichte $R_K = \sqrt{5/3} \cdot R_m$

Ergebnisse der Streuexperimente mit Elektronen:

Ladungsverteilung im Kern hat einen "diffusen" Rand

 \rightarrow Breite der Ladungsverteilung als "Kernradius"

 $R_{\rm m}$: mittlerer Radius $R_m = \sqrt{\langle r^2 \rangle}$

R^{1/2}: Radius bei halber Höhe

 $R_{\rm K}$: Radius einer Kugel mit konstanter Massendichte $R_K = \sqrt{5/3} \cdot R_m$

Radien sind proportional zur 3. Wurzel A → Kernvolumen proportional zu A !

Ergebnisse der Streuexperimente mit Elektronen:

Ladungsverteilung im Kern hat einen "diffusen" Rand

→ Breite der Ladungsverteilung als "Kernradius"

 $R_{\rm m}$: mittlerer Radius $R_m = \sqrt{\langle r^2 \rangle}$

R1/2: Radius bei halber Höhe

 $R_{\rm K}$: Radius einer Kugel mit konstanter Massendichte $R_K = \sqrt{5/3} \cdot R_m$

Radien sind proportional zur 3. Wurzel A → Kernvolumen proportional zu A !

Protonen und Neutronen sind im Kern dicht gepackt, Kern ist kugelförmig

Proton und Neutron

Proton und Neutron haben

- eine Ausdehnung, sind also keine punktförmigen Teilchen
- ein gyromagnetische Verhältnis > 2 (wie bei punktförmigen Teilchen)

Proton	
el. Ladung	+1e
Masse	1.00727646681±0.00000000009 938.272046±0.000021 MeV
Spin	½ ħ
Radius	0.84087± 0.00039 fm 0.8775 ± 0.0051 fm
gyromagn. Verh. g	g = 5.585 694 6893 (16)

Neutron

el. Ladung	0
Masse	1.0086649160±0.0000000004 u 939.565379±0.000021 MeV
Spin	½ ħ
Radius	0.862±0.009 fm
gyromagn. Verh. g	-3.826 085 45 (90)

 $m_n - m_p$ = 1.2933322±0.0000004 MeV

Proton und Neutron sind zusammengesetzt - sie bestehen aus sog. "Quarks"

experimentell: $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{Streurate\,pro\,Raumwinkel\,d}\Omega}{j\cdot N_T}$

experimentell:

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{Streurate\,pro\,Raumwinkel\,d}\Omega}{j\cdot N_T}$

allgemeine quantenmechanische Berechnung als Übergangswahrscheinlichkeit vom Anfangszustand |i> in den Endzustand |f>

$$W_{i \to f} = \frac{2\pi}{\hbar} \cdot |M_{fi}|^2 \cdot \rho(E)$$

"Fermis goldene Regel"

 M_{fi} : Übergangsmatrixelement $\rho(E)$: Dichte der möglichen Endzustände ("Phasenraum")

experimentell:

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{Streurate\,pro\,Raumwinkel\,d}\Omega}{j\cdot N_T}$

allgemeine quantenmechanische Berechnung als Übergangswahrscheinlichkeit vom

$$W_{i \to f} = \frac{2\pi}{\hbar} \cdot |M_{fi}|^2 \cdot \rho(E)$$

"Fermis goldene Regel"

 M_{fi} : Übergangsmatrixelement ho(E): Dichte der möglichen Endzustände ("Phasenraum")

$$M_{fi} = \left\langle f \left| \hat{\mathbf{O}} \right| i \right\rangle = \int \mathrm{dx}^3 \Psi_{\mathrm{f}}^* \hat{\mathbf{O}} \Psi_{\mathrm{i}}$$

für Wechselwirkung vermittelt durch Operator $\hat{\mathbf{O}}$

experimentell:

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{Streurate\,pro\,Raumwinkel\,d}\Omega}{j\cdot N_T}$

allgemeine quantenmechanische Berechnung als Übergangswahrscheinlichkeit vom

Anfangszustand $|i\rangle$ in den Endzustand $|f\rangle$

$$W_{i \to f} = \frac{2\pi}{\hbar} \cdot |M_{fi}|^2 \cdot \rho(E)$$

"Fermis goldene Regel"

 M_{fi} : Übergangsmatrixelement ho(E): Dichte der möglichen Endzustände ("Phasenraum")

$$M_{fi} = \left\langle f \left| \hat{\mathbf{O}} \right| i \right\rangle = \int \mathrm{dx}^3 \Psi_{\mathrm{f}}^* \hat{\mathbf{O}} \Psi_{\mathrm{i}}$$

für Wechselwirkung vermittelt durch Operator $\hat{\mathbf{O}}$

Die physikalisch interessante Information

über den Wechselwirkungsprozess steckt im Matrixelement !

Ende Vorlesung

und Zeit für Fragen?