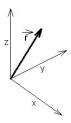
Moderne Physik - Formelsammlung

Prof. Dr. Günter Quast

Wiederholung Klassische Physik

Kinematik

• Ortsvektor: $\vec{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$



- Zeitkoordinate tals Bahnparameter einer Kurve im Raum: $\boxed{\vec{r}(t)}$
- Geschwindigkeit (=Änderung des Ortes): $\vec{v}(t) = \frac{d}{dt}\vec{r}(t) = \dot{\vec{r}}(t)$
- Beschleunigung (=Änderung der Geschwindigkeit): $\vec{a}(t) = \frac{d}{dt}\vec{v}(t) = \frac{d^2}{dt^2}\vec{r}(t) = \ddot{\vec{r}}(t)$
- Gleichmäßig beschleunigte Bewegung (bei vorgegebenem $\vec{a}(t) = const$):

$$-v(t) = \int \vec{a}(t) \ dt = \vec{v}_0 + \vec{a} \cdot t$$

$$- \vec{r}(t) = \int \vec{v}(t) dt = \int \int \vec{a} dt^2 = \boxed{\vec{s}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2}$$

Newton'sche Axiome

- 1. Jeder Körper verharrt im Zustand der Ruhe oder der gleichförmigen geradlinigen Bewegung, solange keine Kraft auf ihn wirkt.
- 2. Die zeitliche Änderung des Impulses $\vec{p} = m \cdot \vec{v}$ ist gleich der wirkenden Kraft \vec{F} :

$$\boxed{\vec{F} = \frac{d\vec{p}}{dt}} = \frac{d}{dt} \left(m \cdot \vec{v} \right) \quad \underbrace{\left[= m \cdot \vec{a} \right]}_{\text{falls m konstant}} \quad [\vec{F}] = N = \text{ kg} \cdot \frac{\text{m}}{\text{s}^2}$$

3. Wirkt ein Körper 1 auf einen Körper 2 mit der Kraft \vec{F}_{12} , so wirkt 2 auf 1 mit einer betragsmäßig gleich großen, entgegengesetzten Kraft $\vec{F}_{21} = -\vec{F}_{12}$, actio = reactio.

1

Beispiele für Kräfte

- Schwerkraft: $\vec{F}_G = m \cdot \vec{g} = const$ (in Erdnähe!)
 - $-g = 9.81 \frac{m}{s^2}$: Erdbeschleunigung
- Federkraft: $\vec{F}_{\text{Hook}}(x) = -kx$ (gilt ganz allgemein bei Verformungen im elastischen Bereich)
- Reibungskräfte:
 - Gleitreibung: $\boxed{\vec{F}_{Gl} = -rac{\vec{v}}{|\vec{v}|}\cdot C_{Gl}}$, $C_{Gl} = c_{Gl}\cdot |\vec{F}_N|$ mit der Normalkraft \vec{F}_N

– Stokes'sche Reibung:
$$\vec{F}_S = -\vec{v} \cdot c_{\text{Stokes}}$$

– Newton'sche Reibung:
$$\vec{F}_{Newton} = -\vec{v}^2 \cdot \frac{\vec{v}}{|\vec{v}|} \cdot c_{\text{Newton}}$$

• Schwerkraft im Erdfeld allgemein:
$$\boxed{\vec{F}_g = \frac{-G \cdot M_{\rm Erde} \cdot m}{\vec{r}^2} \cdot \frac{\vec{r}}{|\vec{r}|}}$$

• Bewegungen beschreiben durch Differentialgleichungen 2. Ordnung:
$$\vec{F}(\vec{x}, t, \frac{d}{dt}\vec{x}, \ldots) = \frac{d}{dt} \left(m \cdot \frac{d}{dt} \vec{x} \right)$$

– häufig:
$$\vec{F}(\vec{x}) = m \cdot \ddot{\vec{x}}$$
 als Spezialfall

Energie

$$\bullet \quad E_{mech} = \int_{\vec{x}_1}^{\vec{x_2}} \vec{F} \cdot d\vec{s}$$

• Potentielle Energie am Ort
$$\vec{r}$$
 bezogen auf \vec{r}_0 :
$$E_{pot}(\vec{r}) = \int_{\vec{r}}^{\vec{r}_0} \vec{F}(\vec{s}) \cdot d\vec{s} = V(\vec{r})$$

• Kennt man die potentielle Energie als Funktion des Ortes (das "Potential"), so erhält man die Kraft durch:

$$\vec{F}(\vec{r}) = -\vec{\nabla}V(\vec{r}) = -\begin{pmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{pmatrix}V(\vec{r})$$

– in einer Dimension:
$$F(x) = -\frac{d}{dx}V(x)$$

- Herleitung: Umkehrung des obigen Integrals, d.h. Ableitung nach der unteren Integralgrenze

• Beispiele zur Energie - Energieformen:

– Konstante Kraft (Schwerkraft am Erdboden): $\boxed{E_{pot} = -F_G \cdot h = m \cdot g \cdot h}$ "Lage-Energie"

– Gespannte Feder:
$$E_{pot} = \int_{l}^{0} -kx \ dx = \frac{1}{2}kl^{2}$$

– Gravitationsfeld
$$(r_0 \to \infty)$$
:
$$E_{pot}(r) = \int_r^{\infty} -\frac{G \cdot m_e \cdot m}{r^2} dr = \frac{-G \cdot m_e \cdot m}{r}$$

- Bewegungsenergie oder "kinetische Energie":

$$E_{kin} = \int F \ dx = \int m \cdot \frac{dv}{dt} \cdot v \ dt = m \cdot \int v \ dv = \frac{1}{2} mv^2 \ \left[= \frac{1}{2} \frac{p^2}{m} \right]$$

Bei vielen mechanischen Prozessen wird ständig potentielle Energie in kinetische verwandelt und umgekehrt.
 Beispiel: Pendel, Fangpendel.

$$E_{mech} = E_{pot} + E_{kin} = const$$

Drehbewegungen

Rotation	analoge Größe bei Translation
Winkel: φ	Ort: \vec{s}
Winkelgeschwindigkeit $ \vec{\omega} = \frac{d\varphi}{dt}$	Geschwindigkeit: $\vec{v} = \frac{d\vec{s}}{dt}$
Drehimpuls $\vec{L} := \vec{r} \times \vec{p}$ Kreisbahn: $L = mrv = \underbrace{mr^2}_{=J} \omega$	Impuls: \vec{p}
Trägheitsmoment: J $\vec{L} = J\vec{\omega}$	Masse: m $\vec{p} = m \cdot \vec{v}$
Drehmoment: $\vec{M} = \frac{d\vec{L}}{dt} = \vec{r} \times \vec{F}$	Kraft: $\vec{F} = \frac{d\vec{p}}{dt}$
Rotationsenergie: $E_{Rot} = \frac{1}{2}J\omega^2 = \frac{\vec{L}^2}{2J}$	Kinetische Energie: $E_{kin} = \frac{1}{2}m\vec{v}^2 = \frac{\vec{p}^2}{2m}$

3

Schwingungen allgemein

- Allgemeine Schwingungsgleichung: $\overline{\ddot{x}}(t) + \omega_0^2 \vec{x}(t) = 0$
- Lösung: $x(t) = A \cdot \cos(\omega_0 t + \varphi_0), \ \omega_0 = \sqrt{\frac{k}{m}}$
- Überlagerung von Schwingungen: $\sum_{i=0}^n A_i \cos(i \cdot \omega \cdot t + \varphi_i)$ "Fourier-Synthese"
- Gedämpfte Schwingung: $\boxed{ \begin{array}{c} m\ddot{x}+b\dot{x}+kx=0\\ \ddot{x}+2\delta\dot{x}+\omega_0^2x=0 \end{array} }$ Lösung:
 - 1. $x(t) = A \cdot e^{-\delta t} \cos(\omega t + \varphi_0), \ \omega^2 = \omega_0^2 \delta^2 > 0$
 - 2. $x(t) = A \cdot e^{-\delta t} \sinh(\sqrt{\delta^2 \omega_0^2} t), \ \omega_0^2 \delta^2 < 0$
 - 3. $x(t) = A(1 + \delta t)e^{-\delta t}, \ \omega_0^2 = \delta^2$
- - Lösung $t \to \infty$: $x(t) = A_2 \cdot \cos(\omega_E t + \varphi')$
 - $A_2(\omega_E) = \frac{\frac{F_0}{m}}{\left[(\omega_0^2 \omega_E^2)^2 + (2\delta\omega_E)^2\right]^{\frac{1}{2}}}$
 - $-A_2$ hängt ab von $\frac{F_0}{m}$, ω_E und $\delta!$

Wellen

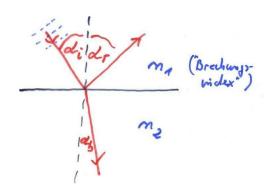
• Welle: $y(\vec{x}, t) = A \cdot \cos(\omega t - \vec{k} \cdot \vec{x})$

$$-\vec{k} = \frac{2\pi}{\lambda}$$

- Phasengeschwindigkeit: $v_{Ph} = \frac{\lambda}{T} = \lambda \cdot f = \frac{\omega}{k}$
- Differentialgleichung für Wellen: $\boxed{\frac{\partial^2 f(x,t)}{\partial t^2} v_{Ph}^2 \frac{\partial^2 f(x,t)}{\partial x^2} = 0}$
- Komplexe Schreibweise: $y(\vec{x},t)=\mathrm{Re}\,\left(A\cdot e^{i(\omega t-\vec{k}\cdot\vec{x})}\right)$ "ebene Welle"
- Kugelwelle: $A(\vec{r},t) = \frac{A}{r} \cdot \text{Re} \left\{ e^{i(\omega t \lambda \cdot r)} \right\}, \ r = |\vec{r}|$
 - Punkte gleicher Phase liegen auf Kugeloberflächen
- Wellenpaket: $f(t,x) = \int_0^\infty A(\omega) \cos(\omega t kx) \ d\omega$ "Fourier-Integral"
 - Gruppengeschwindigkeit: $v_G = \frac{\partial \omega}{\partial k}$
 - $-v_G \neq v_{Ph}$ für $v_{Ph} = v_{Ph}(\omega)$

Elektrodynamik Brechung und Beugung

- Huygens'sches Prinzip: Ebene Wellen als Überlagerung von Kugel-Wellen
 ⇒ Reflexion, Brechung, Beugung als Wellenphänomene!
- Interferenz: Überlagerung von Wellen $A_1 \cos(\omega t \underbrace{\vec{k_1} \cdot \vec{x}}_{\varphi_1})$ und $A_2 \cos(\omega t \underbrace{\vec{k_2} \cdot \vec{x}}_{\varphi_2})$:
 - Maximum für $\varphi_1 \varphi_2 = 2\pi m, \ m = 0, 1, 2, \dots$
 - Minimum für $\varphi_1 \varphi_2 = (2m+1)\pi, \ m = 0, 1, 2, \dots$
- Reflexions- und Brechungsgesetz: $\alpha_i = \alpha_r$ und $\sin \alpha_i = \frac{n_2}{\sin \alpha_b} = \frac{n_2}{n_1}$



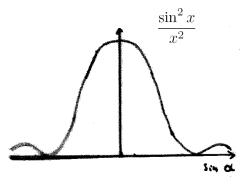
• Beugung an Spalt und Gitter:

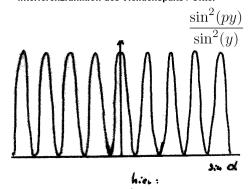
$$I(\alpha) = I_0 \cdot \underbrace{\frac{\sin^2 x}{x^2}}_{\text{Einzelspalt}} \cdot \underbrace{\frac{\sin^2(py)}{\sin^2(y)}}_{\text{Vielfachspalt / Gitter}}$$

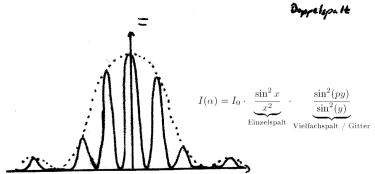
- $-x = \frac{\pi b}{\lambda} \sin \alpha$, b: Spaltbreite
- $-y = \frac{\pi g}{\lambda} \sin \alpha$, g: Spaltabstand, p: Anzahl der (ausgeleuchteten) Spalte
- Intensitätsmaxima bei $\sin \alpha = \pm m \frac{\lambda}{g}$

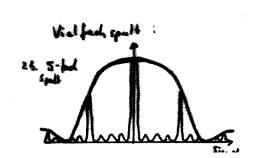
- -p-2 Nebenmaxima
- m: Beugungsordnung

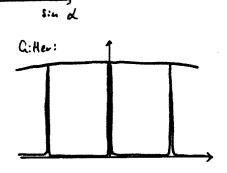
Interferenzfunktion des Vielfachspalts / Gitter





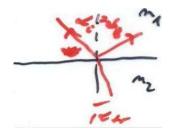




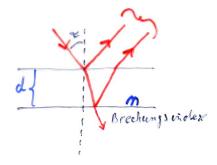


- $\frac{\lambda}{\Delta\lambda} = p \cdot m$ • Auflösung eines Gitters:
- Polarisation: linear, zirkular, elliptisch
 - Licht polarisierbar durch Reflexion unter "Brewster-Winkel" $\alpha_B + \alpha_{tr} = 90^\circ$, d.h. $\tan \alpha_B = \frac{n_2}{n_1}$

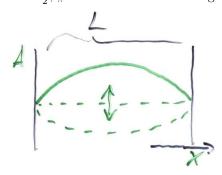
$$\tan \alpha_B = \frac{n_2}{n_1}$$



- Interferenz an dünnen Schichten
 - Gangunterschied $\Delta = 2d(n^2 \sin^2 \alpha)^{\frac{1}{2}} \frac{\lambda}{2}$ $(=2d\cos\alpha-\frac{\lambda}{2}$ für n=1)
 - * $\frac{\lambda}{2}$: Phasensprung
 - * konstruktive Interferenz: $\Delta=m\lambda,\ \lambda=0,1,2,3,\dots$
 - * destruktive Interferenz: $\Delta=(2m+1)\frac{\lambda}{2},\ \lambda=0,1,2,3,\dots$



- Stehende Welle: $f(x,t) = A \cdot \cos(\omega t) \cdot \cos(kx)$
 - Überlagerung einer hin- und rücklaufenden Welle
 - Bei Reflexion an beiden Enden: $L=m\cdot\frac{\lambda}{2}$, "nur bestimmte Wellenlängen passen"



• Theorie der Elektrodynamik ("Maxwell-Gleichungen") sagt "Elektromagnetische Wellen" voraus:

$$\frac{\partial^2 E}{\partial t^2} = c^2 \frac{\partial^2 E}{\partial x^2}$$

$$\frac{\partial^2 B}{\partial t^2} = c^2 \frac{\partial^2 B}{\partial x^2}$$

$$\begin{array}{ll} - \vec{E} \bot \vec{B} \\ - c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \end{array}$$

- Phänomene von Radiowellen über Licht bis γ -Strahlung
- In Materie: $c_{med} = \frac{1}{\sqrt{\varepsilon \varepsilon_0 \mu \mu_0}}$
 - ε,μ : Materialkonstanten, $\mu\approx 1$ bei optischen Medien

 - $\begin{array}{l} \Rightarrow \frac{c}{c_{med}} \approx \sqrt{\varepsilon}, \ c_{med} < c \ \mathrm{da} \ \varepsilon \geq 1 \\ \varepsilon \ \mathrm{h\ddot{a}ngt} \ \mathrm{von} \ \mathrm{der} \ \mathrm{Frequenz} \ \mathrm{ab} \colon c_{med} = c_{med}(\omega). \end{array}$

$$c_{med} = \frac{\omega}{k}, \text{ d.h. } k = \frac{\omega}{c_{med}(\omega)}$$

$$\Rightarrow \frac{dk}{d\omega} = \frac{1}{v_G} \neq \frac{1}{c_{med}} \text{: Dispersion}$$

Statistische Mechanik

• ideales Gas, Zusammenhang zwischen Druck P, Volumen V und Temperatur T:

$$PV = nRT = Nk_{\rm B}T$$

n: Stoffmenge, R Gaskonstante, N Teilchenzahl, $k_{\rm B}$ Boltzmannkonstante in der statistischen Mechanik:

$$PV \,=\, \frac{N}{3} m \overline{v^2} \,=\, \frac{2}{3} N \overline{E_{\rm kin}}$$

daraus folgt:

$$\overline{E_{\rm kin}} = 3 \cdot \frac{1}{2} k_{\rm B} T$$

 $\frac{1}{2}k_{\rm B}T$ ist die mittlere Energie pro Freiheitsgrad

 \bullet Zusammenhang zwischen innerer Energie U, Wärme Q und Arbeit W

$$dU = \delta Q + \delta W$$

- \bullet 2. Hauptsatz der Thermodynamik Wärme kann nicht vollständig in Arbeit verwandelt werden, die Entropie S wächst i.a. an,

$$\Delta S = \int \frac{dQ_{rev}}{T} \ge 0$$

• statistische Verteilung der Energie, Boltzmann-Verteilung

$$w(E)dE \,=\, \frac{1}{Z} \exp(-\frac{E}{k_{\mathrm{B}}T})\, dE;$$

dabei ist $\!Z$ eine Normierungskonstante, die Zustandssumme.