Institut für Theorie der Kondensierten Materie

Prof. Dr. Peter Wölfle, Dr. Jan Brinckmann

27.10.04

http://www.tkm.uni-karlsruhe.de/lehre

janbri@tkm.uni-karlsruhe.de / Physikhochh. Zi. 10.13

	Nachl	dausu	r zur	Vorles	sung T	Cheori	e F	SS 20	04	
	Name:				Mat	rikelnr.	:			
Vo	orname:									
Wichtige Hinweise:										
Studentenausweis bitte sichtbar bereitlegen.										
 □ Bitte nur das gestellte Papier verwenden. Bei Mangel: Handzeichen geben. □ Bitte Namen auf jedes Blatt schreiben. □ Wer vor Ablauf der Zeit abgeben möchte: bitte Handzeichen geben. □ Dieses Blatt mit abgeben. □ Erlaubte Hilfsmittel: Schreibgerät. 										
*** Formelsammlungen jeder Art oder Skripte sind NICHT zugelassen ***										
Bitte wenden: Aufgaben auf der Rückseite \implies \implies \implies \implies										
	Aufgabe	1	2	3	4	5	\sum	Üb.	Schein	
	Punkte									

5

6

von maximal

5

6

30

[**2**P]

- 1 Ein ideales Bose-Gas aus N Teilchen mit Dispersion $E(\mathbf{k}) = \frac{\hbar^2}{2m}k^2$ befindet sich in der Ebene in einem 2-dimensionalen "Würfel" mit $V = L^2$. Die Dichte N/V sei konstant.
 - a) Berechnen Sie die Zustandsdichte $\mathcal{N}_2(\varepsilon) = \int \frac{\mathrm{d}^2 k}{(2\pi)^2} \delta(\varepsilon E(\mathbf{k}))$, und zeigen Sie, daß \mathcal{N}_2 die Form $\mathcal{N}_2(\varepsilon) = \tilde{\mathcal{N}} \Theta(\varepsilon)$ hat. [2P]
 - b) Die mittlere Dichte des Gases ist gegeben durch

$$\langle n \rangle = \int_{-\infty}^{\infty} d\varepsilon \, \mathcal{N}_2(\varepsilon) \, g(\varepsilon - \mu) \, , \quad g = \text{Bosefunktion} \, .$$

Nehmen Sie an, das Bose-Gas kondensiert bei $T=T_0$. Welchen Wert hat $\mu|_{T=T_0}$? [1P] Gewinnen Sie aus der Bedingung $N/V=\langle n\rangle|_{T=T_0}$ einen Ausdruck für T_0 , [2P] und begründen Sie damit, daß $T_0=0$.

2 Nun befindet sich ein *ideales Fermi-Gas* (ohne Spinfreiheitsgrad) aus N Teilchen in dem "Würfel" mit $V=L^2$, N/V=const. in der Ebene, mit $E(\mathbf{k})=\frac{\hbar^2}{2m}k^2$. Es gilt also

$$\frac{N}{V} = \int_{-\infty}^{\infty} d\varepsilon \, \mathcal{N}_2(\varepsilon) \, f(\varepsilon - \mu) \ , \quad \frac{U}{V} = \int_{-\infty}^{\infty} d\varepsilon \, \mathcal{N}_2(\varepsilon) \, \varepsilon \, f(\varepsilon - \mu) \ , \quad f = \text{Fermifunktion} \, .$$

- a) Es sei T=0. Man berechne die Fermienergie E_F .
- b) Es sei $kT \gg E_F$ (klassischer Grenzfall). Man berechne das chemische Potential μ als Funktion von kT und E_F . Es darf $\frac{-\mu}{kT} \gg 1$ angenommen werden. [3P]
- c) Was erwarten Sie als Ergebnis für U(T,N) für $kT \gg E_F$? (mit Begründung)

 Berechnen Sie nun U für $kT \gg E_F$ und vergleichen Sie.

 [2P]

 (Das auftretende Integral kann elementar berechnet werden.)
- In einem 1-dimensionalen Magneten auf der Achse $0 \le x < \infty$ sei eine inhomogene Magnetisierung m(x) zugelassen. Für $T > T_c$ lautet dann das Landau-Funktional für die freie Energie

$$F[T, m(x)] = \int_0^\infty dx \left[\frac{t}{2} m(x)^2 + \frac{\gamma}{2} \left(\frac{\partial m(x)}{\partial x} \right)^2 \right] , \quad t = \frac{T - T_c}{T_c} > 0 , \quad \gamma = \text{const.} > 0$$

- a) Gewinnen Sie eine Gleichung für den Gleichgewichtswert $\tilde{m}(x)$ aus dem Verschwinden der linearen Variation $\delta F = 0$, über den Ansatz $m(x) = \tilde{m}(x) + \delta m(x)$, $\delta m(0) = \delta m(\infty) = 0$, oder durch richtiges Anwenden der Euler-Lagrange-Gleichung.
- b) Am Rand x=0 wird durch ein kleines Magnetfeld eine Magnetisierung $\tilde{m}(0)=m_0$ induziert. Bestimmen Sie $\tilde{m}(x)$ für die Randbedingungen $\tilde{m}(0)=m_0$, $\tilde{m}(\infty)=0$. [2P]
- 4 Ein System befinde sich in einem Zustand mit dem statistischen Operator $\hat{W} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
 - a) Beschreibt \hat{W} einen gemischten oder einen reinen Zustand?
 - b) Berechnen Sie die Entropie $S = -k \operatorname{Tr}[\hat{W} \ln(\hat{W})]$ in einer geeigneten Basis. [2P] Entspricht das Ergebnis der Erwartung? (Begründung!)
- $oxed{5}$ Auf einer Oberfläche befinden sich N Quantendots (Potentialtöpfe), die nicht untereinander wechselwirken. Das Energiespektrum eines Dots lautet $E(n) = E_0 \, n \, , E_0 > 0 \, , n = 1, 2, 3, \ldots$
 - a) Berechnen Sie die kanonische Zustandssumme Z der Oberfläche. [2P]
 - b) Man berechne die mittlere Zahl $\langle N_{\alpha} \rangle$ von Dots, die sich im Zustand $n = \alpha$ befinden. [2P] Geben Sie $\langle N_{\alpha} \rangle$ für $T \to \infty$ und für $T \to 0$ an, und interpretieren Sie das Ergebnis. [2P]