

1. Klausur Theorie F: Universität Karlsruhe Statistische Physik SS 2006

Prof. Dr. Gerd Schön— Priv.Doz. Dr. Matthias Eschrig

Rückgabe: Dienstag, 27.06.2006 in den Übungen

Einziges Hilfsmittel ist ein handgeschriebenes DinA4-Blatt.

25 Punkte + 3 Zusatzpunkte

Aufgabe 1

(3 Punkte)

Thermodynamik:

 $\overline{\mathrm{Das}\;\mathrm{Differential}\;\mathrm{der}\;\mathrm{freien}\;\mathrm{Energie}\;F(T,M)}$ eines homogenen Magneten mit magnetischem Moment M in einem parallelen äußeren Magnetfeld H ist gegeben durch $dF = -S \, dT + H \, dM$.

 \sim a) Führen Sie eine Legendre-Transformation durch, um ein neues thermodynamisches Potential $\check{F}(T,H)$ zu erhalten. Wie lautet dessen vollständiges Differential? (2 Punkte)

b) Leiten Sie sie für $d\tilde{F}(T,H)$ die entsprechende Maxwell-Relation her. (1 Punkt)

Aufgabe 2

(2 Punkte+1 Zusatzpunkt)

Dichtematrix:

 \sqrt{a} Ein Spin- $\frac{1}{2}$ -Teilchen in einem Magnetfeld befinde sich im Quantenzustand $u|\uparrow\rangle + v|\downarrow\rangle$ (u, v komplex, v komplex) $|u|^2 + |v|^2 = 1$). Schreiben Sie in der Basis $|\uparrow\rangle$, $|\downarrow\rangle$ die Dichtematrix (in Matrixschreibweise) auf. Zeigen Sie, dass es sich um einen reinen Zustand handelt. (2 Punkte)

J b) Zusatzaufgabe: Zeigen Sie, dass die Entropie eines reinen Zustands verschwindet. (1 Zusatzpunkt)

Aufgabe 3

(5 Punkte)

Langevin-Gleichung:

Wir betrachten ein System von überdämpften getriebenen harmonischen Oszillatoren, wobei die Kraft $\xi(t)$ stochastisch und Gauß-verteilt ist: $\langle \xi(t) \rangle = 0$, $\langle \xi(t) \xi(t') \rangle = 2m\gamma \, k_B T \, \delta(t-t')$. Die Langevin-Gleichung für dieses System lautet: $m\gamma\dot{x} + m\omega_0^2x = \xi(t)$.

a) Bestimmen Sie mittels der Greenschen Funktion

$$G(t,t') = \frac{1}{m\gamma} \theta(t-t') e^{-\frac{\omega_0^2}{\gamma}(t-t')}$$

den stochastischen Mittelwert $\langle x(t)^2 \rangle$. (4 Punkte)

b) Berechnen Sie die mittlere potentielle Energie. Interpretieren Sie das Ergebnis. (1 Punkt)

Aufgabe 4

(5 Punkte)

Wir betrachten ein Teilchen, das zwischen drei Gitterplätzen $x=(0,\pm a)$ jeweils um einen Gitterplatz hüpfen kann, und zwar (falls ein Gitterplatz dort vorhanden ist) mit der Rate α nach rechts bzw. mit der Rate β nach links. Die Wahrscheinlichkeit, das Teilchen zur Zeit t am Ursprung zu finden sei $\rho_0(t)$, die Wahrscheinlichkeit es am Gitterplatz +a [-a] zu finden sei $\rho_+(t)$ $[\rho_-(t)]$. Offensichtlich gilt $\rho_0(t)$ + $\rho_{+}(t) + \rho_{-}(t) = 1$ zu allen Zeiten.

 \sqrt{a} Stellen Sie die drei Mastergleichungen für die Wahrscheinlichkeiten $\rho_0(t)$, $\rho_+(t)$ und $\rho_-(t)$ auf.

b) Finden Sie die stationäre Lösung. (1 Punkt)

(c) Bestimmen Sie für die stationäre Lösung die mittlere Position des Teilchens $\langle x \rangle$ und die mittlere quadratisch Abweichung $\langle x^2 \rangle$. (1 Punkt)

 \sqrt{d} Lösen Sie die Mastergleichung für $\rho_0(t)$ mit der Anfangsbedingung $\rho_0(0) = 1$ (Teilchen am Ursprung) für den Fall, dass $\alpha = \beta$ ist. (1 Punkt)

Aufgabe 5

(5 Punkte und 1 Zusatzpunkt)

Statistik von Polymeren-mikrokanonisch:

Ein idealisiertes Modell für ein Polymer betrachtet letzteres als eine lineare Kette von N Gliedern, von denen jedes in zwei voneinander verschiedenen strukturellen Variationen ('Stereoisomeren'), V und I, vorkommen kann. Abhängig davon, welches der beiden Variationen V, I vorliegt, habe ein Glied die Länge l_V (l_I) und Energie ϵ_V (ϵ_I).

- \sqrt{a} Finden Sie die Energie E und Entropie S eines Polymers mit n_V Gliedern im strukturellen Zustand V als Funktionen von N, n_V , ϵ_V und ϵ_I . (Benutzen Sie die übliche Näherung $n! = (n/e)^n$ für N, n_V und n_I .) (3 Punkte)
- /b) Eliminieren Sie n_V in dem Ausdruck für S und leiten Sie daraus die Entropie S als Funktion von seiner natürlichen Variablen her. [Hinweis: ϵ_V und ϵ_I sind feste Parameter im resultierenden Ausdruck.]

 (1 Punkt)
- \sqrt{c} Bestimmen Sie die Temperatur. Leiten Sie daraus die Temperaturabhängigkeit von E ab. (1 Punkt)
- $\sqrt{}$ d) Zusatzaufgabe: Bestimmen Sie die mittlere Länge des Polymers als Funktion der Temperatur und der Parameter $l_1, l_V, \epsilon_I, \epsilon_V, N$. (1 Zusatzpunkt)

Aufgabe 6

(5 Punkte und 1 Zusatzpunkt)

Paramagnet-kanonisch:

Als Modell für einen Paramagneten betrachten wir ein System von N nichtwechselwirkenden Spin- $\frac{1}{2}$ Teilchen in einem äußeren magnetischen Feld \vec{H} . Jedes Teilchen befindet sich entweder im Zustand Spin- \uparrow oder im Zustand Spin- \downarrow . Die Energie des j^{ten} Teilchens ist gegeben durch $E_j = -\mu_{\text{B}} H \sigma_j$. Hierbei ist $H = |\vec{H}|$, und $\sigma_j = \pm 1$ unterscheidet den Spin- \uparrow - bzw. Spin- \downarrow -Zustand eines Teilchens.

- \sqrt{a} Bestimmen Sie die Zustandssumme Z_N des N-Teilchensystems. Wie läßt sich diese durch die Zustandssumme Z_1 eines einzelnen Teilchens ausdrücken? (1 Punkt)
 - Jb) Berechnen Sie aus Z_N die freie Energie F des Paramagneten. (0.5 Punkte)
- Zeigen Sie, daß die innere Energie mit der Zustandssumme über $U = -\partial_{\beta} \ln Z_N$ mit $\beta = 1/(kT)$ zusammenhängt und berechnen Sie damit U des Paramagneten. (1 Punkt)
 - Leiten Sie aus F und U dessen Entropie ab und diskutieren Sie diese in den Grenzfällen $T \to 0$ bzw. $T \to \infty$. Welche Mikrozustände (d.h. Spinkonfigurationen) des Systems werden im jeweiligen Grenzfall realisiert? (1.5 Punkte)
 - Je) Berechnen Sie desweiteren die Magnetisierung $M = \mu_{\rm B} \langle N_{\uparrow} N_{\downarrow} \rangle$. (Hier sind $N_{\uparrow,\downarrow}$ die Zahl der Teilchen, die sich im Spin- \uparrow,\downarrow -Zustand befinden.) (1 Punkt)
 - f) Zusatzaufgabe: Leiten Sie die thermische Zustandsgleichung M=M(N,H,T) im Grenzfall hol. Temperaturen ab. Wie lautet die für alle Temperaturen gültige kalorische Zustandsgleichung U=U(M,H)? Interpretieren Sie letztere physikalisch. (1 Zusatzpunkt)