17.07.07

http://www.tkm.uni-karlsruhe.de/lehre

Prof. Dr. Peter Wölfle, Dr. Jan Brinckmann

theorie-f@tkm.uni-karlsruhe.de

	Klaus	ur zu	ır Vorl	esung	; Theor	ie F	SS 20	007	
Name	:				Vor	name:			
Matrikelnr.	:				Tutor Übung				
Semester	:								
Wichtige Hinweise:									
• Student	enauswe	is bitt	e sichtb	ar ber	${ m eitlegen.}$				
• Bitte N	amen au r Ablauf Deckblat e Hilfsm	f jede der Z t mit	s Blatt : eit abge abgeber	schreib eben m 1.	en.		gel: Handz ndzeichen	geben.	en.
*** Forme	lsammlu	ngen,	Skripte	, Rech	ner jedei	· Art si	nd NICHT	Γ zugelasse:	n ***
Rückgabe von	Klausu	r und	Scheine	n: sieh	e Ausha	ng im I	Physikhoch	nhaus und `	WWW.
Di	ie Aufg	aben	werde	n mit	einem	geson	derten E	Blatt ausg	geteilt!
Aufg. Pkte 1 2	Aufg. 4	Pkte	Aufg. 7	Pkte	Aufg. 10 11	Pkte	$\begin{array}{c} \mathbf{Summe} \\ \boxed{} \\ \mathbf{von} \\ 25 \end{array}$	$\begin{array}{c} \ddot{\mathbf{U}}\mathbf{bung} \\ \boxed{}\\ \mathbf{von} \\ 72 \end{array}$	Schein

- Die einzelnen Aufgaben sind voneinander unabhängig und können in beliebiger Reihenfolge bearbeitet werden.
- Für jede Aufgabe ein neues Blatt Schreibpapier verwenden!
- Tür ein System mit Magnetisierung M im Magnetfeld B lautet der 1. Hauptsatz $\mathrm{d}U = T\,\mathrm{d}S \,-\, p\,\mathrm{d}V \,+\, \mu\,\mathrm{d}N \,-\, B\,\mathrm{d}M\,.$
 - a) [1 Pkt] Wie können p, μ, B aus U berechnet werden?
 - b) [1 Pkt] Wie können p, μ, B aus S berechnet werden?
- 2 Was ist die Aussage des
 - a) [1 Pkt] 2. Hauptsatzes der Thermodynamik?
 - b) [1 Pkt] 3. Hauptsatzes der Thermodynamik?
- [3] In einem Behälter mit Volumen V befinden sich N Teilchen eines idealen Gases. Der wärmedurchlässige Behälter ist von einem Wärmebad der Temperatur T umgeben. In einer quasistatischen Zustandsänderung wird das Volumen des Behälters von V nach V' vergrössert.

 [2 Pkte] Berechnen Sie die dabei vom Gas aufgenommene Wärmemenge ΔQ .
- 4 Die Zustandsdichte für ein freies Teilchen in der x-y-Ebene ist definiert als

$$\mathcal{N}(\varepsilon) = \iint_{-\infty}^{\infty} \frac{\mathrm{d}^2 k}{(2\pi)^2} \, \delta\left(\varepsilon - \frac{\hbar^2 k^2}{2m}\right).$$

[2 Pkte] Berechnen Sie $\mathcal{N}(\varepsilon)$.

- [5] Wir betrachten einen Quantenpunkt im Kontakt mit einem Wärmebad der Temperatur T. Der Quantenpunkt besitzt zwei entartete Eigenenergien E_0 und $E_1 = (E_0 + \varepsilon)$ mit $\varepsilon > 0$, der Entartungsgrad dieser Niveaus beträgt α_0 bzw. α_1 .
 - a) [1 Pkt] Man berechne über die freie Energie $F(T)=-k_BT\ln(Z_K)$ die Entropie für T=0: $S_0=\lim_{T\to 0}S(T)\,,\ S(T)=-\frac{\partial F}{\partial T}\,.$
 - b) [1 Pkt] Man berechne die Entropie für $T \to \infty$: $S_{\infty} = \lim_{T \to \infty} S(T)$.
 - c) [1 Pkt] Wie können die Resultate für S aus \mathbf{a}) und \mathbf{b}) über die statistische Definition der Entropie interpretiert werden?
- 6 N Elektronen mit Spin 1/2 befinden sich in einem Kristall mit Volumen V bei einer Temperatur T. In der großkanonischen Gesamtheit ist die Teilchendichte n=N/V gegeben durch

$$n(T, \mu) = 2 \int_0^\infty d\varepsilon \, \mathcal{N}(\varepsilon) \, f(\varepsilon - \mu) , \quad f = \text{Fermi-Funktion}.$$

Die Dispersion der Elektronen in dem Kristall ist nicht bekannt, wohl aber die Fermi-Energie ε_F und die Zustandsdichte $\mathcal{N}(\varepsilon)$ mit $\mathcal{N}(\varepsilon=0)=0$.

 $\ensuremath{\left[\mathbf{2}\right.}$ P
kte $\ensuremath{\left]}$ Man berechne für $T\to 0$ die Kompressibilität

$$\kappa_0 = \lim_{T \to 0} \kappa(T) \quad \text{mit} \quad \kappa(T) = A \left(\frac{\partial n}{\partial \mu}\right)_T, \quad A = const.$$

 $\fbox{7}$ N freie Bosonen befinden sich in einem zweidimensionalen "Volumen" $V=L^2$ bei einer Temperatur T. Das chemische Potential läßt sich berechnen, mit dem Ergebnis

$$\mu(T) = -k_B T \exp\left(-\frac{2\pi\hbar^2}{m} \frac{N}{L^2} \frac{1}{k_B T}\right).$$

 ${\tt [1\,Pkt]}$ Tritt in diesem System Bose-Kondensation auf? Wenn ja, bei welcher Temperatur T_0 ? Begründen Sie Ihre Antwort.

8 Ein Gas aus N freien fermionischen Punktteilchen der Masse m, die einen Spin 1/2 besitzen, befinden sich in einer eindimensionalen Kavität der Länge L auf der x-Achse. An die Wellenfunktionen werden periodische Randbedingungen gestellt. Es sei T=0.

[2 Pkte] Berechnen Sie die Fermi-Energie $\varepsilon_F(n)$, n=N/L. (Hinweis: $\sum_k = \frac{L}{2\pi} \int \mathrm{d}k$)

- In der großkanonischen Gesamtheit lautet der statistische Operator $\hat{W}_G = \frac{1}{Z_G} e^{-(\hat{H} \mu \hat{N})/k_B T}$ mit $\text{Tr}[\hat{W}_G] = 1$, der thermische Mittelwert eines Operators \hat{A} ist definiert als $\langle \hat{A} \rangle = \text{Tr}[\hat{W}_G \hat{A}]$, und die Definition der Entropie lautet $S = -k_B \text{Tr}[\hat{W}_G \ln(\hat{W}_G)]$.

 [2 Pkte] Man zeige, daß das großkanonische Potential $\Omega = U TS \mu N$ durch $\Omega = -k_B T \ln(Z_G)$ gegeben ist, wenn U die innere Energie und N die mittlere Teilchenzahl bezeichnen.
- $\fbox{\bf 10}$ Das Landau-Funktional für einen Ferromagneten mit Übergangstemperatur T_c , an den ein externes Magnetfeld hangelegt wird, lautet

$$F(T,m,h) = \left[\frac{1}{2} \frac{T - T_c}{T_c} m^2 + \frac{1}{4} b m^4 - h m \right] , \quad T_c, b > 0 .$$

- a) [2 Pkte] Welche Magnetisierung $m_0(T)$ stellt sich für $T > T_c$ bzw. $T < T_c$ im Gleichgewicht ein, wenn h = 0? Bestimmen Sie jeweils auch die freie Energie F(T).
- b) [2 Pkt] Welche Magnetisierung m(T,h) stellt sich für $T>T_c$ im Gleichgewicht ein, wenn ein kleines Feld h>0 anliegt? Hinweis: Ansatz $m(T,h)=m_0(T)+\Delta m$ mit $\Delta m\simeq 0$.
- In einem Behälter befindet sich eine große Menge Gas (Teilchenreservoir) mit Temperatur T und chemischem Potential μ . Die Wand des Behälters weist insgesamt R Plätze auf, an denen jeweils höchstens ein Gasmolekül gebunden werden kann. Ein Molekül, das an der Wand gebunden (adsorbiert) wird, wird dem Teilchenreservoir entzogen und gewinnt die Bindungsenergie -I mit I>0.

[3 Pkte] Geben Sie die Mikrozustände für das System der an der Wand gebundenen Moleküle an, und berechnen Sie damit die großkanonische Zustandssumme $Z_G(T, \mu)$ und die mittlere Zahl $N(T, \mu)$ gebundener Moleküle.