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1. Kurzfragen (10 + 10 + 10 + 10 + 10 = 50 Punkte)

(a) Photons – density of states in d = 3. We have that ε(k) = ck. Then

g(ε)dε = g(k)dk =
4πk2

(2π)3
dk (1)

and it follows that

g(ε) =
4πk2

(2π)3

(
dε

dk

)−1
(2)

using that dε
dk = c we get

g(ε) =
1

2(cπ)3
ε2 (3)

The distribution function

n(p) =
1

ecp/T − 1
(4)

(b) Equipartition theorem: Every quadratic degree of freedom in the Hamiltonian con-
tributes kT/2 to the internal energy. For a molecule of two atoms in d = 3, there is
a vibrational mode that contributes 2kT2 to the internal energy and 3kT2 from the

translation. Rotational degrees of freedom contribute 2kT2 to the internal energy .

Therefore U = 7
2NkT , and hence c = dU

dT = 7
2Nk.

(c) Generally, nth order phase transition has the discontinuity in the nth derivative of
the free energy. Entropy in first order transition: Since S = −∂F

∂T (first derivative of
free energy), there will be a jump in entropy at first order transition, for example,
see Fig 1. Also, dS = dQ

T and in a first order transition there is latent heat released
so dS will be finite and hence the jump in entropy.

Entropy and specific heat in a second order phase transition. In a second order phase
transition there is no latent heat and dS = 0 – entropy (which is a first derivative of
free energy) is continous at T = Tc, but there is a cusp in entropy since the second
derivative of the free energy c = T ∂S

∂T is discontinous, fore details see Fig 2 and Fig
3.

(d) We are given δX = (A lnV + B lnT + C)δT + D T
V δV . In order for this to be a

thermodynamic quantity the second derivatives must commute i.e. we must have
that ∂2X

∂T∂V = ∂2X
∂V ∂T . After performing the partial derivatives this boils down to

∂

∂V
(A lnV +B lnT + C) =

∂

∂T
(DT/V ) (5)

which is when A = D.
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Abbildung 1: Entropy profile in the first order phase transition
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Abbildung 2: Entropy in a 2nd order phase transition

(e) Two level system. The partition function is Z = 1 + e−
E1
kT . The probability to be in

the state of energy E1 is given by

p1 =
e−

E1
kT

Z
=

e−
E1
kT

1 + e−
E1
kT

(6)

If we put p1 = 1/4, and substitute x = e−
E1
kT , we get from the above that x = 1/3.

Then taking the log one gets that T = E1
k ln 3 .

2. Quadratic dispersion in d = 2 (5 + 5 + 5 + 10 = 25 Punkte)

(a) Fermi energy. first we find the density of states g(ε). We have that g(ε)dε =
gsg(k)dk = 2πk

(2π)3
dk, where gs = 2 is the spin factor. After using that dε

dk = k/m,

one gets g(ε) = m/π.

The number of particles is given by
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Abbildung 3: Specific heat in a 2nd order phase transition



N/V =

∫ εF

0
g(ε)dε =

m

π
εF (7)

therefore the Fermi energy is εF = π
m
N
V .

(b) The internal energy at T = 0. This is given by

ET=0/V =

∫ εF

0
g(ε)εdε =

m

π

∫ εF

0
εdε

=
π

4m

(
N

V

)2

(8)

(c) Grand-canonical potential, its relation with energy E, and the pressure p. We start
from

Ω = −kTgs
∫
g(k)dk ln (1 + exp (−β(εk − µ)))

= −2kTV

2π

∫ ∞
0

kdk ln (1 + exp (−β(ε(k)− µ))) (9)

After integrating by parts, we get that

Ω = −kTgs
∫
g(k)dk ln (1 + exp (−β(εk − µ)))

= −2kT
V

π

{[
k2

2
ln (1 + exp (−β(εk − µ)))

]∞
0

+
β

2m

∫
dk k3

1

1 + eβ(ε(k)−µ)

}
= − V

2mπ

∫
dk k3

1

1 + eβ(ε(k)−µ)
(10)

The internal energy ET of a gas of fermions at temperature T is given by

ET = gs

∫
dk g(k)εknF (εk, T )

=
V

2mπ

∫
dk k3

1

1 + eβ(ε(k)−µ)

= −Ω (11)

where we have compared this with (10) to obtain the equality in the last line.

(d) Adiabatic process.

We can start from the Gibbs - Dunhem relation, according to which Ω = −pV . In
the previous part of the question, we have proved that in d = 1, Ω = −E. Then it
follows that E = pV . Differentiating this expression we get that

δE = pδV + V δp (12)

For the adiabatic process, it holds that δE = δQ− pδV = −pδV , since there is no
heat exchanged with the environment. Using this in conjuction with (12) we get
that

− pδV = pδV + V δp (13)



From this it follows that pV 2 = const. From (10) we see that we can rewrite the
grand-canonical putential in the form of

Ω = T 2V f(µ/T ) (14)

The entropy per unit volume is given by

S/V = −1/V

(
∂Ω

∂T

)
V,µ

= 2Tf(µ/T )− µf ′(µ/T ) (15)

From above we conclude that S
L(αµ, αT ) = αSL(µ, T ), i.e. S

V is a homogeneous
function of µ, T of degree 1. Similarly we get that

N/V = −1/V

(
∂Ω

∂µ

)
T,µ

= −Tf ′(µ/T ) (16)

From above we conclude that N
V (αµ, αT ) = αNV (µ, T ), i.e. N

V is a homogeneous
function of µ, T of degree 1.

Therefore, it follows that S(µ,T )
N(µ,T ) = S(αµ,αT )

N(αµ,αT ) is homogeneous function of degree 0.

Since in adiabatic process S is constant, and N is constant, it must follow that µ
T

is constant in adiabatic process. From (16), it the follows that TV = const. To find
the pT−δ = const exponent, we use that pV 2 = const and T 2V 2 = const. Dividing
these leads to pT−2 = cosnt. Hence δ = 2.

3. Nematic transition (10 + 10 + 5 = 25 Punkte)

(a) Nematic order parameter. The free energy is given by:

F (ε, φ) =
1

2
c0ε

2 − λεφ+
1

2
χ−10 φ2 +

B

4
φ4 (17)

Solving for ∂F
∂ε = 0, we get that

ε =
λ

c0
φ. (18)

The equation ∂F
∂φ = 0 leads to

−λε+ χ−10 φ+Bφ3 = 0 (19)

Substituting (18) into (19) leads to, either φ = 0 or

φ =

√(
λ2

c0
− χ−10

)
1

B

=

√(
λ2

c0
−A(T − T0)

)
1

B
(20)

which is a solution iff λ2

c0
−A(T − T0) > 0; otherwise φ = 0



(b) Elastic modulus. First we need to consider the partial derivatives. We have F =
F (ε, φ), and that ∂F

∂φ = ∂F
∂ε = 0, which makes φ dependent on ε. We start from

δF

δε
=
∂F

∂ε
+
∂F

∂φ

∂φ

∂ε
(21)

Then using (21) we get that:

δ

(
δF

δε

)
=
∂2F

∂ε2
δε+

∂2F

∂ε∂φ
δφ+

(
∂2F

∂φ2
δφ+

∂2F

∂φ∂ε
δε

)
∂φ

∂ε
+ δ

(
∂φ

∂ε

)
∂F

∂φ︸︷︷︸
0

(22)

Therefore it follows that

δ2F

δε2
=
∂2F

∂ε2
+ 2

∂2F

∂ε∂φ

∂φ

∂ε
+
∂2F

∂φ2

(
∂φ

∂ε

)2

(23)

and, using that ∂φ
∂ε = −

∂2F
∂ε∂φ

∂2F
∂φ2

(which was given as a hint in the question) we get that

c =
d2F

dε2
| ∂F
∂ε

= ∂F
∂φ

=0

=
∂2F

∂ε2
−
(
∂2F

∂ε∂φ

)2(
∂2F

∂φ2

)−1
(24)

where we used the hint given in the question going from 2nd into third line. From
(17) we find that

∂2F

∂ε2
= c0

∂2F

∂ε∂φ
= −λ

∂2F

∂φ2
= χ−10 + 3Bφ2 (25)

Then substituting these in (24) we get that

c = c0 −
λ2

χ−10 + 3Bφ2
(26)

(i) In the normal phase φ = 0 and thus

c = c0 −
λ2

A(T − T0)
(27)

Shuffling this we can rewrite it in the form

c/c0 =
T − Tc
T − T0

(28)

where Tc = T0 + λ2

Ac0



(ii) Nematic phase. In the nematic phase, as we have found in a):

φ =

√(
λ2

c0
−A(T − T0)

)
1

B
(29)

Then substituting this into (26) we get

c/c0 = 1− λ2

c0

(
3λ2

c0
− 2χ−10

) (30)

Shuffling this expression we get to

c

c0
=

2(Tc − T )

3Tc − T0 − 2T
(31)

(c) Graph. From the previous part we have seen that

c/c0|normal =
T − Tc
T − T0

c

c0
|nematic =

2(Tc − T )

3Tc − T0 − 2T
(32)

From this it follows that at the nematic phase transition c → 0, and the slopes of
c vs T in normal and nematic phases are different, due to different temperature
dependencies in (32). From the graph, we read off that c→ 0 at about Tc = 140K
(when red/blue curve reach zero).


