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1. Kurzfragen (10 + 10 + 10 + 10 + 10 = 50 Punkte)

(a)

Photons — density of states in d = 3. We have that e(k) = ck. Then

k2
g(€)de = g(k)dk = ?2:)36% (1)

and it follows that

using that % = ¢ we get

1 2
g(E) - 2(671')36 (3)
The distribution function
np) = (@)

Equipartition theorem: Every quadratic degree of freedom in the Hamiltonian con-
tributes k7'/2 to the internal energy. For a molecule of two atoms in d = 3, there is
a vibrational mode that contributes 2% to the internal energy and 3% from the
translation. Rotational degrees of freedom contribute QI%T to the internal energy .
Therefore U = %NkT, and hence ¢ = % = %Nk:.

Generally, nth order phase transition has the discontinuity in the nth derivative of

the free energy. Entropy in first order transition: Since S = —g—g (first derivative of

free energy), there will be a jump in entropy at first order transition, for example,
aQ

see Fig 1. Also, dS = =¥ and in a first order transition there is latent heat released

so dS will be finite and hence the jump in entropy.

Entropy and specific heat in a second order phase transition. In a second order phase
transition there is no latent heat and dS = 0 — entropy (which is a first derivative of
free energy) is continous at T' = T, but there is a cusp in entropy since the second
derivative of the free energy c = Tg—; is discontinous, fore details see Fig 2 and Fig
3.

We are given X = (AlnV + BInT + C)oT + D%(SV. In order for this to be a
thermodynamic quantity the second derivatives must commute i.e. we must have

that 88;78)% = %' After performing the partial derivatives this boils down to

) )
Gy (AInV + BT +C) = =(DT/V) (5)

which is when A = D.
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Abbildung 1: Entropy profile in the first order phase transition
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Abbildung 2: Entropy in a 2nd order phase transition

E
(e) Two level system. The partition function is Z =1+ e~ #7. The probability to be in
the state of energy Fj is given by

p1 = = (6)
4 1+ e*%

E
If we put p; = 1/4, and substitute z = e‘ﬁ, we get from the above that x = 1/3.
Then taking the log one gets that T = kll?nl3

2. Quadratic dispersion in d =2 (5+ 545+ 10 = 25 Punkte)

(a) Fermi energy. first we find the density of states g(e). We have that g(e)de =

gsg(k)dk = (g%"’g dk, where g; = 2 is the spin factor. After using that g—]z = k/m,

one gets g(e) = m/m.

The number of particles is given by
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Abbildung 3: Specific heat in a 2nd order phase transition



NV = /0 " g(e)de = er (1)

therefore the Fermi energy is ep = %%

(b) The internal energy at 7" = 0. This is given by

€ER m €R
Er—g/V = / g(e)ede:/ ede
0 0

T
© (N\?
it ®)
(¢) Grand-canonical potential, its relation with energy E, and the pressure p. We start
from
@ = ~kTg. [ g)abin 1+ exp (-l — )
2TV [

= I [ Rk e (<B(et) - ) 9)

0

After integrating by parts, we get that

0 = _kTgs/g(k;)dkln(l+eXP(—5(6k—M)))

vV ([k? < B 3 1
= —2kT— { [2 In (1 + exp (—A(ex — u)))]o T /d’f & Heﬁ((k)—u)}
14

1
_ 3 L
B 2mm /dk K 1 + eBle(k)—p) (10)

The internal energy Er of a gas of fermions at temperature T is given by

Er = gs/dk g(k)egnp(ex, T)

_ 14 3 1
= S / A =
_ 0 (11)

where we have compared this with (10) to obtain the equality in the last line.

(d) Adiabatic process.

We can start from the Gibbs - Dunhem relation, according to which Q2 = —pV. In
the previous part of the question, we have proved that in d = 1, Q = —E. Then it
follows that E = pV. Differentiating this expression we get that

SE = pdV + Vop (12)

For the adiabatic process, it holds that dFE = §QQ — pdV = —pdV, since there is no
heat exchanged with the environment. Using this in conjuction with (12) we get
that

—pdV =pdV + Vip (13)



From this it follows that pV? = const. From (10) we see that we can rewrite the
grand-canonical putential in the form of
Q= T2V f(u/T) (14)

The entropy per unit volume is given by

szz—uv<$§wu

= 2Tf(n/T) — puf'(u/T) (15)

From above we conclude that 2(ap,aT) = a2 (u,T), ie.
function of u,T of degree 1. Similarly we get that

is a homogeneous

<l

)

— T (16)

From above we conclude that %(a,u, o) = a%(,u,T), ie.
function of u, T of degree 1.

Therefore, it follows that ]‘3((’; ?) = NapaT)
Since in adiabatic process S is constant, and N is constant, it must follow that %
is constant in adiabatic process. From (16), it the follows that TV = const. To find
the pT—% = const exponent, we use that pV? = const and T?V? = const. Dividing

these leads to pT'~2 = cosnt. Hence § = 2.

<=

is a homogeneous

S(ap,aT) is homogeneous function of degree 0.

3. Nematic transition (10 + 10 + 5 = 25 Punkte)

(a) Nematic order parameter. The free energy is given by:

1 1 B

F(e,¢) = geoe” = Aeg + 5xg 0" + o (17)

Solving for %—f =0, we get that

A
= 2 0. 18
=9 (18)
The equation %—g = 0 leads to

e+ x5 o+ Bp® =0 (19)

Substituting (18) into (19) leads to, either ¢ = 0 or

which is a solution iff ’C\—j — A(T — Tj) > 0; otherwise ¢ =0



(b) Elastic modulus. First we need to consider the partial derivatives. We have F' =

F(e,¢), and that 85 = %f = 0, which makes ¢ dependent on e. We start from

SF _OF OFd¢

E_E+%a (21)

Then using (21) we get that:

2 2
5<5F> 6F5€+8F
o¢

P2F 2F \ 8¢ o¢
. 5) +5<

OF

~—~
0

5¢+<

Therefore it follows that

$F 9*F _0*F ¢ O*F (9p\°
o= 2 9 98 5 —d) (23)
Oe Oe Jedp O~ 0¢
%P
and, using that %‘f =— %Zaﬁ (which was given as a hint in the question) we get that
992
d’F
© = de? |%€ gE=0
2 2 2 2 -1
_ O°F ([ 0°F 0°F (24)
Oe? 0ed 0?2

where we used the hint given in the question going from 2nd into third line. From
(17) we find that

0*F
De2
0*F
0edop
0*F
8¢?

= Xy  +3B¢* (25)

Then substituting these in (24) we get that

)\2
c=c— ——— 26
Xo ' +3B¢? 20
(i) In the normal phase ¢ = 0 and thus
AQ
=c)— 27
CTOT AT 1) (27)
Shuffling this we can rewrite it in the form
T-T.
= 28
¢/co = 7 T (28)

where T, = Ty + Aco



(ii) Nematic phase. In the nematic phase, as we have found in a):

o = \/@j — A(T - Tg)) % (29)

Then substituting this into (26) we get

)\2
cfco=1— (30)
Co <% — 2)(0_1)
Shuffling this expression we get to
2. —T
o 2L-T) (31)
co 3. —1Th—2T
(¢) Graph. From the previous part we have seen that
T-T,
C/CO |n07‘mal T—T,
c 2(T.—-1T)
i o= _ve 7 32
co |nematzc 3Tc — TO _or ( )

From this it follows that at the nematic phase transition ¢ — 0, and the slopes of
c vs T in normal and nematic phases are different, due to different temperature
dependencies in (32). From the graph, we read off that ¢ — 0 at about 7, = 140K
(when red/blue curve reach zero).



