Moderne Theoretische Physik III SS 2014

Prof. Dr. J. Schmalian

Klausur, 100 Punkte

Dr. U. Karahasanovic, Dr. P. P. Orth

21.10.2014, 16:00 - 18:00 Uhr, 120 min

1. Kurzfragen

$$(10 + 10 + 10 + 10 + 10 = 50 \text{ Punkte})$$

(a) Photons – density of states in d=3. We have that $\epsilon(k)=ck$. Then

$$g(\epsilon)d\epsilon = g(k)dk = \frac{4\pi k^2}{(2\pi)^3}dk \tag{1}$$

and it follows that

$$g(\epsilon) = \frac{4\pi k^2}{(2\pi)^3} \left(\frac{d\epsilon}{dk}\right)^{-1} \tag{2}$$

using that $\frac{d\epsilon}{dk} = c$ we get

$$g(\epsilon) = \frac{1}{2(c\pi)^3} \epsilon^2 \tag{3}$$

The distribution function

$$n(p) = \frac{1}{e^{cp/T} - 1} \tag{4}$$

- (b) Equipartition theorem: Every quadratic degree of freedom in the Hamiltonian contributes kT/2 to the internal energy. For a molecule of two atoms in d=3, there is a vibrational mode that contributes $2\frac{kT}{2}$ to the internal energy and $3\frac{kT}{2}$ from the translation. Rotational degrees of freedom contribute $2\frac{kT}{2}$ to the internal energy . Therefore $U=\frac{7}{2}NkT$, and hence $c=\frac{dU}{dT}=\frac{7}{2}Nk$.
- (c) Generally, nth order phase transition has the discontinuity in the nth derivative of the free energy. Entropy in first order transition: Since $S = -\frac{\partial F}{\partial T}$ (first derivative of free energy), there will be a jump in entropy at first order transition, for example, see Fig 1. Also, $dS = \frac{dQ}{T}$ and in a first order transition there is latent heat released so dS will be finite and hence the jump in entropy.

Entropy and specific heat in a second order phase transition. In a second order phase transition there is no latent heat and dS = 0 – entropy (which is a first derivative of free energy) is continuous at $T = T_c$, but there is a cusp in entropy since the second derivative of the free energy $c = T \frac{\partial S}{\partial T}$ is discontinuous, fore details see Fig 2 and Fig 3.

(d) We are given $\delta X = (A \ln V + B \ln T + C)\delta T + D\frac{T}{V}\delta V$. In order for this to be a thermodynamic quantity the second derivatives must commute i.e. we must have that $\frac{\partial^2 X}{\partial T \partial V} = \frac{\partial^2 X}{\partial V \partial T}$. After performing the partial derivatives this boils down to

$$\frac{\partial}{\partial V}(A\ln V + B\ln T + C) = \frac{\partial}{\partial T}(DT/V) \tag{5}$$

which is when A = D.

Abbildung 1: Entropy profile in the first order phase transition

Abbildung 2: Entropy in a 2nd order phase transition

(e) Two level system. The partition function is $Z = 1 + e^{-\frac{E_1}{kT}}$. The probability to be in the state of energy E_1 is given by

$$p_1 = \frac{e^{-\frac{E_1}{kT}}}{Z} = \frac{e^{-\frac{E_1}{kT}}}{1 + e^{-\frac{E_1}{kT}}} \tag{6}$$

If we put $p_1 = 1/4$, and substitute $x = e^{-\frac{E_1}{kT}}$, we get from the above that x = 1/3. Then taking the log one gets that $T = \frac{E_1}{k \ln 3}$.

2. Quadratic dispersion in d=2

$$(5+5+5+10=25 \text{ Punkte})$$

(a) Fermi energy, first we find the density of states $g(\epsilon)$. We have that $g(\epsilon)d\epsilon = g_s g(k)dk = \frac{2\pi k}{(2\pi)^3}dk$, where $g_s = 2$ is the spin factor. After using that $\frac{d\epsilon}{dk} = k/m$, one gets $g(\epsilon) = m/\pi$.

The number of particles is given by

Abbildung 3: Specific heat in a 2nd order phase transition

$$N/V = \int_0^{\epsilon_F} g(\epsilon) d\epsilon = \frac{m}{\pi} \epsilon_F \tag{7}$$

therefore the Fermi energy is $\epsilon_F = \frac{\pi}{m} \frac{N}{V}$.

(b) The internal energy at T = 0. This is given by

$$E_{T=0}/V = \int_0^{\epsilon_F} g(\epsilon)\epsilon d\epsilon = \frac{m}{\pi} \int_0^{\epsilon_F} \epsilon d\epsilon$$
$$= \frac{\pi}{4m} \left(\frac{N}{V}\right)^2$$
(8)

(c) Grand-canonical potential, its relation with energy E, and the pressure p. We start from

$$\Omega = -kTg_s \int g(k)dk \ln (1 + \exp(-\beta(\epsilon_k - \mu)))$$

$$= -\frac{2kTV}{2\pi} \int_0^\infty kdk \ln (1 + \exp(-\beta(\epsilon(k) - \mu)))$$
(9)

After integrating by parts, we get that

$$\Omega = -kTg_s \int g(k)dk \ln (1 + \exp(-\beta(\epsilon_k - \mu)))
= -2kT \frac{V}{\pi} \left\{ \left[\frac{k^2}{2} \ln (1 + \exp(-\beta(\epsilon_k - \mu))) \right]_0^{\infty} + \frac{\beta}{2m} \int dk \ k^3 \frac{1}{1 + e^{\beta(\epsilon(k) - \mu)}} \right\}
= -\frac{V}{2m\pi} \int dk \ k^3 \frac{1}{1 + e^{\beta(\epsilon(k) - \mu)}}$$
(10)

The internal energy E_T of a gas of fermions at temperature T is given by

$$E_{T} = g_{s} \int dk \ g(k)\epsilon_{k} n_{F}(\epsilon_{k}, T)$$

$$= \frac{V}{2m\pi} \int dk \ k^{3} \frac{1}{1 + e^{\beta(\epsilon(k) - \mu)}}$$

$$= -\Omega$$
(11)

where we have compared this with (10) to obtain the equality in the last line.

(d) Adiabatic process.

We can start from the Gibbs - Dunhem relation, according to which $\Omega = -pV$. In the previous part of the question, we have proved that in d = 1, $\Omega = -E$. Then it follows that E = pV. Differentiating this expression we get that

$$\delta E = p\delta V + V\delta p \tag{12}$$

For the adiabatic process, it holds that $\delta E = \delta Q - p \delta V = -p \delta V$, since there is no heat exchanged with the environment. Using this in conjuction with (12) we get that

$$-p\delta V = p\delta V + V\delta p \tag{13}$$

From this it follows that $pV^2 = const.$ From (10) we see that we can rewrite the grand-canonical putential in the form of

$$\Omega = T^2 V f(\mu/T) \tag{14}$$

The entropy per unit volume is given by

$$S/V = -1/V \left(\frac{\partial \Omega}{\partial T}\right)_{V,\mu}$$
$$= 2Tf(\mu/T) - \mu f'(\mu/T) \tag{15}$$

From above we conclude that $\frac{S}{L}(\alpha\mu, \alpha T) = \alpha \frac{S}{L}(\mu, T)$, i.e. $\frac{S}{V}$ is a homogeneous function of μ, T of degree 1. Similarly we get that

$$N/V = -1/V \left(\frac{\partial \Omega}{\partial \mu}\right)_{T,\mu}$$
$$= -Tf'(\mu/T) \tag{16}$$

From above we conclude that $\frac{N}{V}(\alpha\mu, \alpha T) = \alpha \frac{N}{V}(\mu, T)$, i.e. $\frac{N}{V}$ is a homogeneous function of μ, T of degree 1.

Therefore, it follows that $\frac{S(\mu,T)}{N(\mu,T)} = \frac{S(\alpha\mu,\alpha T)}{N(\alpha\mu,\alpha T)}$ is homogeneous function of degree 0. Since in adiabatic process S is constant, and N is constant, it must follow that $\frac{\mu}{T}$ is constant in adiabatic process. From (16), it the follows that TV = const. To find the $pT^{-\delta} = const$ exponent, we use that $pV^2 = const$ and $T^2V^2 = const$. Dividing these leads to $pT^{-2} = cosnt$. Hence $\delta = 2$.

3. Nematic transition

(10 + 10 + 5 = 25 Punkte)

(a) Nematic order parameter. The free energy is given by:

$$F(\epsilon, \phi) = \frac{1}{2}c_0\epsilon^2 - \lambda\epsilon\phi + \frac{1}{2}\chi_0^{-1}\phi^2 + \frac{B}{4}\phi^4$$
 (17)

Solving for $\frac{\partial F}{\partial \epsilon} = 0$, we get that

$$\epsilon = \frac{\lambda}{c_0}\phi. \tag{18}$$

The equation $\frac{\partial F}{\partial \phi} = 0$ leads to

$$-\lambda\epsilon + \chi_0^{-1}\phi + B\phi^3 = 0 \tag{19}$$

Substituting (18) into (19) leads to, either $\phi = 0$ or

$$\phi = \sqrt{\left(\frac{\lambda^2}{c_0} - \chi_0^{-1}\right) \frac{1}{B}}$$

$$= \sqrt{\left(\frac{\lambda^2}{c_0} - A(T - T_0)\right) \frac{1}{B}}$$
(20)

which is a solution iff $\frac{\lambda^2}{c_0} - A(T - T_0) > 0$; otherwise $\phi = 0$

(b) Elastic modulus. First we need to consider the partial derivatives. We have $F = F(\epsilon, \phi)$, and that $\frac{\partial F}{\partial \phi} = \frac{\partial F}{\partial \epsilon} = 0$, which makes ϕ dependent on ϵ . We start from

$$\frac{\delta F}{\delta \epsilon} = \frac{\partial F}{\partial \epsilon} + \frac{\partial F}{\partial \phi} \frac{\partial \phi}{\partial \epsilon} \tag{21}$$

Then using (21) we get that:

$$\delta\left(\frac{\delta F}{\delta \epsilon}\right) = \frac{\partial^2 F}{\partial \epsilon^2} \delta \epsilon + \frac{\partial^2 F}{\partial \epsilon \partial \phi} \delta \phi + \left(\frac{\partial^2 F}{\partial \phi^2} \delta \phi + \frac{\partial^2 F}{\partial \phi \partial \epsilon} \delta \epsilon\right) \frac{\partial \phi}{\partial \epsilon} + \delta\left(\frac{\partial \phi}{\partial \epsilon}\right) \underbrace{\frac{\partial F}{\partial \phi}}_{0} \tag{22}$$

Therefore it follows that

$$\frac{\delta^2 F}{\delta \epsilon^2} = \frac{\partial^2 F}{\partial \epsilon^2} + 2 \frac{\partial^2 F}{\partial \epsilon \partial \phi} \frac{\partial \phi}{\partial \epsilon} + \frac{\partial^2 F}{\partial \phi^2} \left(\frac{\partial \phi}{\partial \epsilon} \right)^2 \tag{23}$$

and, using that $\frac{\partial \phi}{\partial \epsilon} = -\frac{\frac{\partial^2 F}{\partial \epsilon \partial \phi}}{\frac{\partial^2 F}{\partial \phi^2}}$ (which was given as a hint in the question) we get that

$$c = \frac{d^2 F}{d\epsilon^2} \Big|_{\frac{\partial F}{\partial \epsilon} = \frac{\partial F}{\partial \phi} = 0}$$

$$= \frac{\partial^2 F}{\partial \epsilon^2} - \left(\frac{\partial^2 F}{\partial \epsilon \partial \phi}\right)^2 \left(\frac{\partial^2 F}{\partial \phi^2}\right)^{-1}$$
(24)

where we used the hint given in the question going from 2nd into third line. From (17) we find that

$$\frac{\partial^2 F}{\partial \epsilon^2} = c_0$$

$$\frac{\partial^2 F}{\partial \epsilon \partial \phi} = -\lambda$$

$$\frac{\partial^2 F}{\partial \phi^2} = \chi_0^{-1} + 3B\phi^2$$
(25)

Then substituting these in (24) we get that

$$c = c_0 - \frac{\lambda^2}{\chi_0^{-1} + 3B\phi^2} \tag{26}$$

(i) In the normal phase $\phi = 0$ and thus

$$c = c_0 - \frac{\lambda^2}{A(T - T_0)} \tag{27}$$

Shuffling this we can rewrite it in the form

$$c/c_0 = \frac{T - T_c}{T - T_0} \tag{28}$$

where $T_c = T_0 + \frac{\lambda^2}{Ac_0}$

(ii) Nematic phase. In the nematic phase, as we have found in a):

$$\phi = \sqrt{\left(\frac{\lambda^2}{c_0} - A(T - T_0)\right) \frac{1}{B}}$$
 (29)

Then substituting this into (26) we get

$$c/c_0 = 1 - \frac{\lambda^2}{c_0 \left(\frac{3\lambda^2}{c_0} - 2\chi_0^{-1}\right)}$$
 (30)

Shuffling this expression we get to

$$\frac{c}{c_0} = \frac{2(T_c - T)}{3T_c - T_0 - 2T} \tag{31}$$

(c) Graph. From the previous part we have seen that

$$c/c_0|_{normal} = \frac{T - T_c}{T - T_0}$$

$$\frac{c}{c_0}|_{nematic} = \frac{2(T_c - T)}{3T_c - T_0 - 2T}$$
(32)

From this it follows that at the nematic phase transition $c \to 0$, and the slopes of c vs T in normal and nematic phases are different, due to different temperature dependencies in (32). From the graph, we read off that $c \to 0$ at about $T_c = 140K$ (when red/blue curve reach zero).