Moderne Theoretische Physik III SS 15

Prof. Dr. A. Mirlin Klausur, 100 Punkte + 35 Bonus Punkte
Dr. Una Karahasanovic, Dr. Ivan Protopopov 23.07.2015, 17:30 - 19:30 Uhr,
120 min

1. Kurzfragen

$$(5+10+15+15+5=50 \text{ Punkte} + 15 \text{ Bonuspunkte})$$

(a) Ein klassisches Teilchen bewegt sich bei Temperatur T im folgenden Potenzial:

$$V(x) = \begin{cases} +\infty & x < -a \text{ oder } x > 2a \\ 0, & -a < x < 0, \\ V_0 > 0, & 0 < x < 2a. \end{cases}$$
 (1)

Finde die Wahrscheinlichkeit p_L , das Teilchen links vom Ursprung (x=0) zu finden. Was ist dann die Wahrscheinlichkeit p_R , das Teilchen rechts davon zu finden? Bei welcher Temperatur gilt $p_R = p_L$?

- (b) Betrachte ein quantenmechanisches Teilchen auf einer Strecke der Länge L. Die Energieeigenwerte sind $E(n) = \frac{\hbar^2 \pi^2 n^2}{2mL^2}$, mit n=1,2,3... Bestimme die Temperaturabhängigkeit der Wärmekapazität (für festes L) bei niedrigen $(k_BT \ll \hbar^2/mL^2)$ sowie hohen $(k_BT \gg \hbar^2/mL^2)$ Temperaturen.
- (c) Betrachte nun nichtwechselwirkende Fermionen mit einer quadratischen Dispersionsrelation $\epsilon(p) = p^2/2m$. Wie skaliert die Fermienergie E_F mit der Teilchendichte nin d=2 and d=3 Raumdimensionen (angenommen $E_F \propto n^{\alpha}$ – was ist jeweils der Exponent α ?) Wie skaliert die Wärmekapazität des Systems mit der Temperatur bei $T \ll E_F$ in d=2 und d=3?
- (d) Der Hamiltonoperator eines Spin-1-Isingmodells in einer Raumdimension lautet

$$H = -J \sum_{i=1}^{N} \sigma_i \sigma_{i+1}. \tag{2}$$

Dabei werden periodische Randbedingungen angenommen, $\sigma_{N+1} \equiv \sigma_1$. Die Transfermatrix dieses Systems ist eine 3×3-Matrix \mathcal{T} mit Einträgen

$$\mathcal{T}_{\sigma\sigma'} = e^{\beta J\sigma\sigma'}. (3)$$

Es gilt $\beta = 1/k_BT$. In unserem Modell können wir explizit angeben:

$$\mathcal{T} = \begin{pmatrix} e^{\beta J} & 1 & e^{-\beta J} \\ 1 & 1 & 1 \\ e^{-\beta J} & 1 & e^{\beta J} \end{pmatrix}. \tag{4}$$

Die drei Eigenwerte von \mathcal{T} sind dann

$$\lambda_0 = 2 \sinh \beta J,$$

$$\lambda_{\pm} = \frac{1}{2} + \cosh (\beta J) \pm \sqrt{\frac{9}{4} - \cosh (\beta J) + \cosh^2 (\beta J)}.$$
(5)

Leite einen Ausdruck für die Zustandssumme Z der geschlossenen Kette aus N Spins her, in dem die Transfermatrix \mathcal{T} eingeführt wird. Drücke deine Antwort dann durch die Eigenwerte $\lambda_0, \lambda_-, \lambda_+$ zunächst für endliche N und dann im thermodynamischen Limes $N \gg 1$ aus. Wie verläuft die Wärmekapazität des Systems bei niedrigen Temperaturen $\beta J \gg 1$?

Hinweis: Beim Übergang zum thermodynamischen Limes kann verwendet werden, dass stets $\lambda_{-} < \lambda_{0} < \lambda_{+}$ gilt.

(e) Die Operatoren α^{\dagger} and β^{\dagger} erzeugen Bosonen in zwei getrennten Einteilchen-Orbitalen; die entsprechenden Vernichtungsoperatoren sind α and β . Eine Bogoliubov-Transformation wird definiert durch

$$a^{\dagger} = u\alpha^{\dagger} + v\beta,$$

$$b^{\dagger} = u\beta^{\dagger} + v\alpha,$$
 (6)

dabei seien $u, v \in \mathbb{R}$. Bestimme daraus die Bedingung, die u und v erfüllen müssen, damit a^{\dagger} und b^{\dagger} ebenfalls voneinander unabhängige bosonische Operatoren sind.

Bonusaufgabe

(f) Das Landaufunktional eines Antiferromagneten sei durch $\mathcal{F} = tM^2/2 + bM^4 + cM^6$ gegeben, mit dem Ordnungsparameter M (dieser heißt staggered magnetization). Der Koeffizient c > 0 ist konstant, aber die Koeffizienten t und b hängen von der Temperatur und der Stärke des anliegenden Magnetfelds ab. Hier beschränken wir uns auf den Halbraum b < 0 des Phasendiagramms unseres Systems. In diesem findet ein Phasenübergang 1. Ordnung unter Variation von t bei $t_c(b) = b^2/2c$ statt. Wir nehmen an, dass bei gegebenem anliegenden Magnetfeld nahe der kritischen Temperatur T_c die Koeffizienten des Landaufunktionals approximiert werden können:

$$b \approx b_0 < 0$$
 sowie $t \approx t_c(b_0) + \alpha(T - T_c)$.

Bestimme das Verhalten der Magnetisierung und der Entropie des Systems als Funktion der Temperatur in der Nähe von T_c .

2. Bosegas mit Potenzgesetz-Dispersionsrelation. (5+5+5+10+10=35 Punkte) Wir befassen uns mit einem idealen Bosegas in 3 Raumdimensionen, dessen Dispersionsrelation einem allgemeinen Potenzgesetz $\epsilon(p) = \epsilon_0 (p/p_0)^{\alpha}$ genügt. Dabei sind ϵ_0 und p_0 Konstanten der Einheit Energie bzw. Impuls und $\alpha > 0$ ist eine Zahl. Bei dieser Übung könnte folgendes Integral hilfreich sein.

$$\int_0^\infty dx \, x^\beta e^{-x} = \Gamma(\beta + 1) \,, \qquad \beta > -1. \tag{7}$$

 $\Gamma(x)$ ist die Eulersche Gammafunktion.

- (a) Gib die Teilchendichte n der Bosonen bei einer Temperatur T und einem chemischen Potenzial μ als Integral über den Impuls p an. Berechne die Zustandsdichte $\nu(\epsilon)$ und geh im Integral dazu über, über die Energie ϵ zu integrieren. Für die Dichte ist es nicht notwendig, die Integration über ϵ auszuführen.
- (b) Bei festem n und hoher Temperatur T ist das chemische Potenzial μ negativ und betragsmäßig groß. Bestimme die Abhängigkeit $\mu(n,T)$ in diesem Limes.

- (c) Berechne das großkanonische Potenzial $\Omega(\mu,T,V)$ des Systems bei hoher Temperatur.
- (d) Bestimme die Entropie S(T, V, N) als Funktion von Temperatur, Volumen und Teilchenzahl in diesem Hochtemperaturlimes. Berechne die spezifische Wärmekapazität c_V des Systems. Vergleiche deine Antwort mit dem Gleichverteilungssatz.
- (e) Bei niedrigen Temperaturen kann in einem solchen System Bosekondensation auftreten. Untersuche die Konvergenz des Integrals über ϵ , welches in Teil a) für die Teilchendichte hergeleitet wurde. Zeige, dass in unserem Fall tatsächlich Bosekondensation für $\alpha < 3$ auftritt, aber nicht für $\alpha \geq 3$. Zeige außerdem, dass bei $\alpha < 3$ die Abhängigkeit der kritischen Temperatur von der Teilchendichte durch

$$T_c \propto n^{\gamma}$$
 (8)

gegeben ist. Bestimme den Exponenten γ . Skizziere die Abhängigkeit des chemischen Potenzials bei fester Teilchendichte im Fall $\alpha < 3$.

3. Teilchen im Magnetfeld und Langevin Gleichung

charakterisiert durch den Korrelator

(5+10=15 Punkte + 10+10=20 Bonuspunkte)Betrachte ein Teilchen mit Ladung e und Masse m, das sich in der Ebene senkrecht zum Magnetfeld B bewegt. Wir bezeichnen die Geschwindigkeit des Teilchens mit $\vec{v} = (v_x, v_y)$. Das Teilchen erfährt zudem die Reibungskraft $-m\gamma\vec{v} = -m\gamma(v_x, v_y)$ und die zufällige Langevin Kraft $\vec{\xi}(t) = (\xi_x(t), \xi_y(t))$ der Umgebung. Das Rauschen $\vec{\xi}(t)$ ist

$$\langle \xi_{\alpha}(t)\xi_{\beta}(t')\rangle = q\delta_{\alpha\beta}\delta(t-t'), \qquad \alpha, \beta = x, y.$$
 (9)

(a) Schreibe die Langevin Gleichungen, die die Bewegung des Teilchens beschreiben, auf. Vereinfache die Langevin Gleichungen durch das Einführen von $a(t) = v_x(t) + iv_y(t)$ und $a^*(t) = v_x(t) - iv_y(t)$.

Hinweis: Für a(t) und $a^*(t)$ sollten die Gleichungen folgende Form haben

$$m\dot{a} - im\Omega a + \gamma ma = \xi_x + i\xi_y,\tag{10}$$

$$m\dot{a}^{\star} + im\Omega a^{\star} + \gamma ma^{\star} = \xi_x - i\xi_y. \tag{11}$$

Hier ist $\Omega = eB/m$ die Zyklotronfrequenz.

(b) Wir nehmen an, dass das Teilchen zum Zeitpunkt t = 0 in Ruhe und am Ort (0,0) war. Löse die Langevin Gleichungen in Abhängigkeit der Geschwindigkeit des Teilchens $\vec{v}(t)$.

Hinweis: Als Lösung für a(t) sollte man zu folgendem Ergebnis kommen

$$a(t) = \frac{1}{m} \int_0^t d\tau (\xi_x(\tau) + i\xi_y(\tau)) e^{i\Omega(t-\tau) - \gamma(t-\tau)}.$$
 (12)

Bonusaufgabe

- (c) Finde die Korrelationsfunktion $\langle v_{\alpha}(t)v_{\beta}(t')\rangle$.
 - Hinweis: Betrachte das Produkt $v_{\alpha}(t)v_{\beta}(t')$ und führe den Mittelwert über das zufällige Rauschen aus.
- (d) Studiere den Grenzwert der Gleichzeit-Korrelationsfunktion $\langle v_{\alpha}(t)v_{\beta}(t)\rangle$ für $t\to\infty$. Benutze dein Resultat um die Stärke q der Langevin Kraft mit der Temperatur der Umgebung zu verbinden.