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1. Short questions (5410 + 15+ 15+ 5 = 50 Punkte + 15 Bonuspunkte)
(a) The probability distribution for x is just the Boltzamnn distribution
p(e) = Ce™V/ka 0
with constant C' which can be found from normalization
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(b) The partition function of the system reads
oo
Z =Y e bn/ksT (5)
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At low temperatures, kgT < h?/mL?, we can approximate the sum by the first
two terms and
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We find now the free energy, entropy and heat capacity of the system
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At high temperatures many terms in the sum are of the same order. We can replace
summation by integration. Thus, the partition function reads
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Free energy, entropy and the heat capacity are
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The value of ¢, is in accord with the classical equipartition theorem.

We need first to find the Fermi momentum. In d dimensions we have
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Here g is the spin degeneracy. The Fermi energy
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The heat capacity of a fermi system at low temperatures knows only about the
density of states at the Fermi level and is proportional to 7" in any dimension.

The partition function can be expressed in terms of the transfer matrix as

7 = Z 7:717027;2,03 .. '7:7N01 — tr’TN, (16)
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Writing the trace in the basis where 7 is diagonal we get
Z =2+ 0. (17)
In thermodynamic limit only the term with maximal eigenvalue is important and
Z=2\Y. (18)

At low temperatures
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We thus find
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We consider the commutation relations

[aJr, bﬂ = {uaT +vB,uf + va} = [uaT,va} + [vﬁ, uﬁq =—w+uv=0 (23)
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We see that all commutation relations are satisfied provided that u? — v?=1.

Differentiating the Landau functional with respect to the order parameter we get
the saddle-point equation

M (t 4 4bM? + 6cM?) = 0. (26)



The saddle points are
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b JIZ 32
M=+ 28
1,+ \/ 3¢ ) ( )
b+ /7 3ct)2
Mt = i\/ + - /2 (29)
(30)

They are all real in the vicinity of the point ¢ = t.(b) = b?/2c. In particular, right

at the transition
M+ = :tﬂ - (31)
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The second derivative of the Landau functional d?F/dM? takes values
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Thus in the vicinity of the phase transition My and M + are the minima of the
Landau functional. In this minima the Landau functional takes values

F(Mo) =0. (36)
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In the vicinity of the transition we make the following approximations in Eq. (37):
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We get
boadT
F(Mys) ~ — °4c . (42)

We note that at the point of the phase transition F (M +) = 0 = F(My).
We are now ready to give the final results. At §7" > 0 the stable state of the system

is M = My = 0. The contribution of the magnetic moments to the entropy of the
system 65 = —0rF(My) = 0.

At 6T < 0O the stable state is M = My =~ j:\/—%. The contribution of the

magnetic moments to the entropy of the system 05 = —0rF (M +) =~ bpa/4c. The
magnetization and entropy of the system have jumps at the point of the phase
transition.



2. Bose gas with power-law dispersion relation. (5+ 5+ 5+ 10 + 10 = 35 Punkte)

Let us consider ideal Bose gas in 3 spatial dimensions with the dispersion relation
e(p) = eo(p/po)“. Here, €y and pg are constants with dimension of energy and momentum
respectively and a > 0 is a number.

In this exercise you may need the integral

/OO dezPe ™ =T(8+1), B>-1. (43)
0

Here, I'(z) is the Euler gamma function.

(a) We have for the density of bosons
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The number of states with the absolute value of momentum in the interval (p, p+dp)
is
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Thus, the density of states is

2 3 2 L 3 31
pog=B o P dp py (et d eyt b (€N g
de 2m2h3de  2m2R3 \eg/) de \ € 2m2h3 ey \ € '

Finally
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(b) At high temperatures e #/¥87 > 1. Thus
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(c) The Q-potential an ideal Bose gas is given by
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At et/#8T « 1 we can expand the logarithm. We get (we take into account expres-
sion for the density of states derived in 2a)
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(d) The entropy reads now
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We substitute expression for p derived in 2b to get
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The heat capacity is
3
cy =TorS = —NkpT. (54)
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This is in agreement with the equipartition theorem for a = 2.

(e) We come back to the expression for the number of bosons in the system
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For a < 3 the integral converges at ¢ = 0 even for y = 0. Thus, there is a maximal
number of bosons that can be accommodated in the single particle states with
non-zero momentum. If the density of the system is larger than
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macroscopic number of particles condenses into the state p = 0. This is the Bose
condensation. On the other hand, for a > 3 the integral in Eq. (55) diverges at
small energies if p = 0. Thus, there is no Bose condensation.

To estimate the critical temperature we switch in Eq. (56) to dimensionless inte-
gration variable y = ¢/kpT. We find
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3. Particle in magnetic field and Langevin equation
(54 10 = 15 Punkte + 10 + 10 = 20 Bonuspunkte)
Consider a particle with charge e and mass m moving on a plane in perpendicular
magnetic field B. The particle also experiences friction force —my?v = —my(vg, vy)

—

from the surrounding media and random Langevin force £(t) = (£x(t),&y(t)). The noise
&(t) is characterised by the correlator

(€a(t)€a(t) = qdapd(t —1'). (59)

(a) The equations of motion for our particle include the Lorentz force, the friction force
and the Langevin forces

. eB
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B
muy, — %vx +myvy = &y. (61)




To solve the Langevin equations it is convenient to introduce

a = vz + ivy, a* = vy — ivy. (62)

We have
md—i%a-f—’yma =& +1i&y, (63)
ma* + i?a* +yma* = & — i&y. (64)

We discuss no the solution of the first equation. The solution for a* can be obtained
by complex conjugation.
In the absence of Langevin forces we have

a=Cefit Q= §. (65)
me
We now allow C' to vary in time and get
mC = (&,(t) + ify(t))e_mHW. (66)
Thus,
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Due to our initial conditions Cy = 0 and we get finally
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We can now find v, and v, by taking real and imaginary parts of a(t)
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(¢) We compute now the correlation functions one by one.

(v (t)vz( m2/ dT/ dr'e= 7= <[§x( T) cos Qt — 7) — &(7) sin Q(t — 7)]
Eo(T) cos Q' — ') — & (7 )sinﬂ(t'—T')])
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q min(t,t’) ,
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= 27327 cos Q(t—t’)e_’Y(t—i-t’) (ezvmin(t,t') — 1) — 277327 COSQ(t—t’) <e‘7‘t—t’\ B 6_7(t+tl)) ‘

In an analogous way we get

(v, (t)v, (1)) = 277?&27 cos Q(t — 1) (e—v\t—t’\ - e—7<t+t’>) : (74)

(s (t)vy (') = 27327 sin Q(t — t) (e—ﬂt—t’\ . e—7<t+t’>) . (75)
(d) In the limit t =t — oo we get
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Comparing it to the equipartition theorem we get

q=2m~T. (77)



