Moderne Theoretische Physik III SS 2015

Prof. Dr. A. Mirlin

Blatt 12, 100 Punkte + 50 Bonuspunkte

Dr. U. Karahasanovic, Dr. I. Protopopov

Besprechung, 17.07.2015

1. Short questions

$$(5+10+15+15+5=50 \text{ Punkte} + 15 \text{ Bonuspunkte})$$

(a) The probability distribution for x is just the Boltzamnn distribution

$$p(x) = Ce^{-V(x)/k_BT} \tag{1}$$

with constant C which can be found from normalization

$$C = \frac{1}{a + 2ae^{-V_0/k_B T}}. (2)$$

Thus

$$p_L = \frac{1}{1 + 2e^{-V_0/k_B T}}, \qquad p_R = \frac{2e^{-V_0/k_B T}}{1 + 2e^{-V_0/k_B T}}.$$
 (3)

The probabilities are equal at

$$2e^{-V_0/k_BT} = 1, T = \frac{V_0}{k_B \ln 2}.$$
 (4)

(b) The partition function of the system reads

$$Z = \sum_{n=1}^{\infty} e^{-E_n/k_B T}.$$
 (5)

At low temperatures, $k_BT \ll \hbar^2/mL^2$, we can approximate the sum by the first two terms and

$$Z \approx e^{-\frac{\hbar^2 \pi^2}{2mL^2 k_B T}} \left(1 + e^{-\frac{3\hbar^2 \pi^2}{2mL^2 k_B T}} \right).$$
 (6)

We find now the free energy, entropy and heat capacity of the system

$$F = -k_B T \ln Z = \frac{\hbar^2 \pi^2}{2mL^2} - k_B T \ln \left(1 + e^{-\frac{3\hbar^2 \pi^2}{2mL^2 k_B T}} \right) \approx \frac{\hbar^2 \pi^2}{2mL^2} - k_B T e^{-\frac{3\hbar^2 \pi^2}{2mL^2 k_B T}}, \quad (7)$$

$$S = -\partial_T F = k_B e^{-\frac{3\hbar^2 \pi^2}{2mL^2 k_B T}} + \frac{3\hbar^2 \pi^2}{2mL^2 T} e^{-\frac{3\hbar^2 \pi^2}{2mL^2 k_B T}} \approx \frac{3\hbar^2 \pi^2}{2mL^2 T} e^{-\frac{3\hbar^2 \pi^2}{2mL^2 k_B T}}, \quad (8)$$

$$c_L = T\partial_T S = -\frac{3\hbar^2 \pi^2}{2mL^2 T} e^{-\frac{3\hbar^2 \pi^2}{2mL^2 k_B T}} + \left[\frac{3\hbar^2 \pi^2}{2mL^2 T}\right]^2 e^{-\frac{3\hbar^2 \pi^2}{2mL^2 k_B T}} \approx \frac{1}{k_B} \left[\frac{3\hbar^2 \pi^2}{2mL^2 T}\right]^2 e^{-\frac{3\hbar^2 \pi^2}{2mL^2 k_B T}}.$$
(9)

At high temperatures many terms in the sum are of the same order. We can replace summation by integration. Thus, the partition function reads

$$Z \approx \int_0^\infty dn e^{-\frac{\hbar^2 \pi^2 n^2}{2mL^2 k_B T}} \approx L \sqrt{\frac{m k_B T}{2\pi \hbar^2}}.$$
 (10)

Free energy, entropy and the heat capacity are

$$F = -Tk_B \ln \left[L \sqrt{\frac{mk_B T}{2\pi\hbar^2}} \right] , \qquad (11)$$

$$S = k_B \ln \left[L \sqrt{\frac{mk_B T}{2\pi\hbar^2}} \right] + \frac{1}{2},\tag{12}$$

$$c_L = \frac{k_B}{2}. (13)$$

The value of c_L is in accord with the classical equipartition theorem.

(c) We need first to find the Fermi momentum. In d dimensions we have

$$n = g \int_{|p| < p_F} \frac{d^d p}{(2\pi\hbar)^d} \propto p_F^d, \qquad p_F \propto n^{1/d}.$$
 (14)

Here g is the spin degeneracy. The Fermi energy

$$E_F = \frac{p_F^2}{2m} \propto n^{2/d}.\tag{15}$$

The heat capacity of a fermi system at low temperatures knows only about the density of states at the Fermi level and is proportional to T in any dimension.

(d) The partition function can be expressed in terms of the transfer matrix as

$$Z = \sum_{\sigma_1, \dots \sigma_N} \mathcal{T}_{\sigma_1, \sigma_2} \mathcal{T}_{\sigma_2, \sigma_3} \dots \mathcal{T}_{\sigma_N \sigma_1} = \operatorname{tr} \mathcal{T}^{\mathrm{N}}.$$
 (16)

Writing the trace in the basis where \mathcal{T} is diagonal we get

$$Z = \lambda_0^N + \lambda_-^N + \lambda_+^N. \tag{17}$$

In thermodynamic limit only the term with maximal eigenvalue is important and

$$Z = \lambda_+^N. \tag{18}$$

At low temperatures

$$\lambda_{+} \approx 2 \cosh \beta J + \frac{1}{\cosh \beta J} \approx e^{\beta J} + 3e^{-\beta J}.$$
 (19)

We thus find

$$F = -NJ - k_B T N \ln \left[1 + 3e^{-2\beta J} \right] \approx -NJ - 3k_B T N e^{-2J/k_B T}, \tag{20}$$

$$S = \frac{N}{T}(2J + k_B T)e^{-2J/k_B T} \approx \frac{2NJ}{T}e^{-2J/k_B T},$$
 (21)

$$c = \frac{4J^2N}{k_BT^2}e^{-2J/k_BT}. (22)$$

(e) We consider the commutation relations

$$[a^{+}, b^{+}] = \left[u\alpha^{\dagger} + v\beta, u\beta^{\dagger} + v\alpha\right] = \left[u\alpha^{\dagger}, v\alpha\right] + \left[v\beta, u\beta^{\dagger}\right] = -uv + uv = 0 \quad (23)$$

$$[a^{+}, a] = \left[u\alpha^{\dagger} + v\beta, u\alpha + v\beta^{\dagger}\right] = \left[u\alpha^{\dagger}, u\alpha\right] + \left[v\beta, v\beta^{\dagger}\right] = v^{2} - u^{2}$$
 (24)

$$[b^{+}, b] = \left[u\beta^{\dagger} + v\alpha, u\beta + v\alpha^{\dagger}\right] = \left[u\beta^{\dagger}, u\beta\right] + \left[v\alpha, v\alpha^{\dagger}\right] = v^{2} - u^{2}$$
 (25)

We see that all commutation relations are satisfied provided that $u^2 - v^2 = 1$.

(f) Differentiating the Landau functional with respect to the order parameter we get the saddle-point equation

$$M(t + 4bM^2 + 6cM^4) = 0. (26)$$

The saddle points are

$$M_0 = 0 (27)$$

$$M_{1,\pm} = \pm \sqrt{\frac{-b - \sqrt{b^2 - 3ct/2}}{3c}},$$
 (28)

$$M_{2,\pm} = \pm \sqrt{\frac{-b + \sqrt{b^2 - 3ct/2}}{3c}}. (29)$$

(30)

They are all real in the vicinity of the point $t = t_c(b) = b^2/2c$. In particular, right at the transition

$$M_{1,\pm} = \pm \sqrt{-\frac{b}{6c}},\tag{31}$$

$$M_{2,\pm} = \pm \sqrt{-\frac{b}{2c}}.$$
 (32)

The second derivative of the Landau functional $d^2\mathcal{F}/dM^2$ takes values

$$\frac{d^2 \mathcal{F}}{dM^2} \bigg|_{t=t_c(b), M=0} = t_c b > 0,$$
(33)

$$\frac{d^{2}\mathcal{F}}{dM^{2}}\Big|_{t=t_{c}(b),M=0} = t_{c}b > 0,$$

$$\frac{d^{2}\mathcal{F}}{dM^{2}}\Big|_{t=t_{c}(b),M=M_{1,\pm}} = -\frac{b^{2}}{c} < 0,$$
(33)

$$\frac{d^2 \mathcal{F}}{dM^2} \bigg|_{t=t_c(b), M=M_{1,\pm}} = \frac{5b^2}{3c} > 0.$$
(35)

Thus in the vicinity of the phase transition M_0 and $M_{2,\pm}$ are the minima of the Landau functional. In this minima the Landau functional takes values

$$\mathcal{F}(M_0) = 0.$$
 (36)

$$\mathcal{F}(M_{2,\pm}) = M_{2,\pm}^2 \left(\frac{t}{2} + bM_{2,\pm}^2 + cM_{2,\pm}^4\right) = M_{2,\pm}^2 \frac{6ct + b(-2b + \sqrt{4b^2 - 6ct})}{18c}.$$
(37)

In the vicinity of the transition we make the following approximations in Eq. (37):

$$b \approx b_0,$$
 (38)

$$t \approx \frac{b_0^2}{2c} + \alpha(T - T_c) \equiv \frac{b_0^2}{2c} + \alpha \delta T, \tag{39}$$

$$M_{2,\pm}^2 \approx -\frac{b_0}{2c}.$$
 (40)

(41)

We get

$$\mathcal{F}(M_{2,\pm}) \approx -\frac{b_0 \alpha \delta T}{4c}.\tag{42}$$

We note that at the point of the phase transition $\mathcal{F}(M_{2,\pm}) = 0 = \mathcal{F}(M_0)$.

We are now ready to give the final results. At $\delta T > 0$ the stable state of the system is $M = M_0 = 0$. The contribution of the magnetic moments to the entropy of the system $\delta S = -\partial_T \mathcal{F}(M_0) = 0.$

At $\delta T < 0$ the stable state is $M = M_{2,\pm} \approx \pm \sqrt{-\frac{b_0}{2c}}$. The contribution of the magnetic moments to the entropy of the system $\delta S = -\partial_T \mathcal{F}(M_{2,\pm}) \approx b_0 \alpha/4c$. The magnetization and entropy of the system have jumps at the point of the phase transition.

2. Bose gas with power-law dispersion relation. (5+5+5+10+10=35 Punkte)

Let us consider ideal Bose gas in 3 spatial dimensions with the dispersion relation $\epsilon(p) = \epsilon_0 (p/p_0)^{\alpha}$. Here, ϵ_0 and p_0 are constants with dimension of energy and momentum respectively and $\alpha > 0$ is a number.

In this exercise you may need the integral

$$\int_0^\infty dx x^\beta e^{-x} = \Gamma(\beta + 1), \qquad \beta > -1.$$
(43)

Here, $\Gamma(x)$ is the Euler gamma function.

(a) We have for the density of bosons

$$n = \int \frac{d^3p}{(2\pi\hbar)^3} \frac{1}{e^{(\epsilon(p)-\mu)/k_BT} - 1}.$$
 (44)

The number of states with the absolute value of momentum in the interval (p, p+dp) is

$$dn = \frac{4\pi p^2 dp}{(2\pi\hbar)^3} = \frac{p^2 dp}{2\pi^2\hbar^3}.$$
 (45)

Thus, the density of states is

$$\nu(\epsilon) = \frac{dn}{d\epsilon} = \frac{p^2}{2\pi^2\hbar^3} \frac{dp}{d\epsilon} = \frac{p_0^3}{2\pi^2\hbar^3} \left(\frac{\epsilon}{\epsilon_0}\right)^{\frac{2}{\alpha}} \frac{d}{d\epsilon} \left(\frac{\epsilon}{\epsilon_0}\right)^{\frac{1}{\alpha}} = \frac{p_0^3}{2\pi^2\hbar^3\alpha\epsilon_0} \left(\frac{\epsilon}{\epsilon_0}\right)^{\frac{3}{\alpha}-1}. \tag{46}$$

Finally

$$n(T,\mu) = \int_0^\infty d\epsilon \nu(\epsilon) \frac{1}{e^{(\epsilon-\mu)/k_B T} - 1} = \frac{p_0^3}{2\pi^2 \hbar^3 \alpha \epsilon_0} \int_0^\infty d\epsilon \left(\frac{\epsilon}{\epsilon_0}\right)^{\frac{3}{\alpha} - 1} \frac{1}{e^{(\epsilon-\mu)/k_B T} - 1}.$$
(47)

(b) At high temperatures $e^{-\mu/k_BT}\gg 1$. Thus

$$n(\mu, T) \approx \frac{p_0^3}{2\pi^2 \hbar^3 \alpha \epsilon_0} \int_0^\infty d\epsilon \left(\frac{\epsilon}{\epsilon_0}\right)^{\frac{3}{\alpha} - 1} \frac{1}{e^{(\epsilon - \mu)/k_B T}} = \frac{p_0^3 \Gamma[3/\alpha]}{2\pi^2 \hbar^3 \alpha} \left(\frac{k_B T}{\epsilon_0}\right)^{3/\alpha} e^{\mu/k_B T}.$$
(48)

Thus,

$$\mu(n,T) = -k_B T \ln \left[\frac{p_0^3 \Gamma[3/\alpha]}{2\pi^2 \hbar^3 \alpha n} \left(\frac{k_B T}{\epsilon_0} \right)^{3/\alpha} \right]. \tag{49}$$

(c) The Ω -potential an ideal Bose gas is given by

$$\Omega(T, V, \mu) = k_B T V \int \frac{d^3 p}{(2\pi\hbar)^3} \ln\left[1 - e^{(\mu - \epsilon(p))/k_B T}\right] = k_B T V \int_0^\infty d\epsilon \nu(\epsilon) \ln\left[1 - e^{(\mu - \epsilon)/k_B T}\right].$$
(50)

At $e^{\mu/k_BT} \ll 1$ we can expand the logarithm. We get (we take into account expression for the density of states derived in 2a)

$$\Omega(T, V, \mu) = -k_B T V \frac{p_0^3}{2\pi^2 \hbar^3 \alpha \epsilon_0} \int_0^\infty d\epsilon \left(\frac{\epsilon}{\epsilon_0}\right)^{\frac{3}{\alpha} - 1} e^{(\mu - \epsilon)/k_B T}
= -k_B T V \frac{p_0^3 \Gamma[3/\alpha]}{2\pi^2 \hbar^3 \alpha} \left(\frac{k_B T}{\epsilon_0}\right)^{\frac{3}{\alpha}} e^{\mu/k_B T} = -V \frac{p_0^3 \epsilon_0 \Gamma[3/\alpha]}{2\pi^2 \hbar^3 \alpha} \left(\frac{k_B T}{\epsilon_0}\right)^{\frac{3}{\alpha} + 1} e^{\mu/k_B T}.$$
(51)

(d) The entropy reads now

$$S(T, V, \mu) = -\partial_T \Omega = V \frac{p_0^3 \epsilon_0 \Gamma[3/\alpha]}{2\pi^2 \hbar^3 \alpha} e^{\mu/k_B T} \left(\frac{k_B T}{\epsilon_0}\right)^{\frac{3}{\alpha} + 1} \left[\frac{1}{T} \left(\frac{3}{\alpha} + 1\right) - \frac{\mu}{k_B T^2}\right]. \tag{52}$$

We substitute expression for μ derived in 2b to get

$$S(T, V, N) = k_B V n \left[\left(\frac{3}{\alpha} + 1 \right) - \frac{\mu}{k_B T} \right] = \left(\frac{3}{\alpha} + 1 \right) k_B N + k_B N \ln \left[\frac{p_0^3 \Gamma[3/\alpha]}{2\pi^2 \hbar^3 \alpha n} \left(\frac{k_B T}{\epsilon_0} \right)^{3/\alpha} \right].$$
(53)

The heat capacity is

$$c_V = T\partial_T S = -\frac{3}{\alpha}Nk_B T. \tag{54}$$

This is in agreement with the equipartition theorem for $\alpha = 2$.

(e) We come back to the expression for the number of bosons in the system

$$n(T,\mu) = \frac{p_0^3}{2\pi^2 \hbar^3 \alpha \epsilon_0} \int_0^\infty d\epsilon \left(\frac{\epsilon}{\epsilon_0}\right)^{\frac{3}{\alpha} - 1} \frac{1}{e^{(\epsilon - \mu)/k_B T} - 1}.$$
 (55)

For $\alpha < 3$ the integral converges at $\epsilon = 0$ even for $\mu = 0$. Thus, there is a maximal number of bosons that can be accommodated in the single particle states with non-zero momentum. If the density of the system is larger than

$$n_c(T) = \frac{p_0^3}{2\pi^2 \hbar^3 \alpha \epsilon_0} \int_0^\infty d\epsilon \left(\frac{\epsilon}{\epsilon_0}\right)^{\frac{3}{\alpha} - 1} \frac{1}{e^{\epsilon/k_B T} - 1},\tag{56}$$

macroscopic number of particles condenses into the state p=0. This is the Bose condensation. On the other hand, for $\alpha \geq 3$ the integral in Eq. (55) diverges at small energies if $\mu=0$. Thus, there is no Bose condensation.

To estimate the critical temperature we switch in Eq. (56) to dimensionless integration variable $y = \epsilon/k_BT$. We find

$$n_c(T) = \frac{p_0^3}{2\pi^2 \hbar^3 \alpha} \left(\frac{k_B T}{\epsilon_0}\right)^{\frac{3}{\alpha}} \int_0^\infty dy y^{\frac{3}{\alpha} - 1} \frac{1}{e^y - 1} \propto T^{3/\alpha}.$$
 (57)

Thus,

$$T_c \propto n^{\alpha/3}$$
. (58)

3. Particle in magnetic field and Langevin equation

$$(5 + 10 = 15 \text{ Punkte} + 10 + 10 = 20 \text{ Bonuspunkte})$$

Consider a particle with charge e and mass m moving on a plane in perpendicular magnetic field B. The particle also experiences friction force $-m\gamma\vec{v} = -m\gamma(v_x, v_y)$ from the surrounding media and random Langevin force $\vec{\xi}(t) = (\xi_x(t), \xi_y(t))$. The noise $\xi(t)$ is characterised by the correlator

$$\langle \xi_{\alpha}(t)\xi_{\beta}(t')\rangle = q\delta_{\alpha\beta}\delta(t-t'). \tag{59}$$

(a) The equations of motion for our particle include the Lorentz force, the friction force and the Langevin forces

$$m\dot{v}_x + \frac{eB}{c}v_y + m\gamma v_x = \xi_x,\tag{60}$$

$$m\dot{v}_y - \frac{eB}{c}v_x + m\gamma v_y = \xi_y. \tag{61}$$

To solve the Langevin equations it is convenient to introduce

$$a = v_x + iv_y, \qquad a^* = v_x - iv_y. \tag{62}$$

We have

$$m\dot{a} - i\frac{eB}{c}a + \gamma ma = \xi_x + i\xi_y,\tag{63}$$

$$m\dot{a}^* + i\frac{eB}{c}a^* + \gamma ma^* = \xi_x - i\xi_y. \tag{64}$$

(b) We discuss no the solution of the first equation. The solution for a^* can be obtained by complex conjugation.

In the absence of Langevin forces we have

$$a = Ce^{i\Omega t - \gamma t}, \qquad \Omega = \frac{eB}{mc}.$$
 (65)

We now allow C to vary in time and get

$$m\dot{C} = (\xi_x(t) + i\xi_y(t))e^{-i\Omega t + \gamma t}.$$
(66)

Thus,

$$C(t) = C_0 + \frac{1}{m} \int_0^t d\tau (\xi_x(\tau) + i\xi_y(\tau)) e^{-i\Omega\tau + \gamma\tau}$$
(67)

$$a(t) = \left[C_0 + \frac{1}{m} \int_0^t d\tau (\xi_x(\tau) + i\xi_y(\tau)) e^{-i\Omega\tau + \gamma\tau} \right] e^{i\Omega t - \gamma t}.$$
 (68)

Due to our initial conditions $C_0 = 0$ and we get finally

$$a(t) = \frac{e^{i\Omega t - \gamma t}}{m} \int_0^t d\tau (\xi_x(\tau) + i\xi_y(\tau)) e^{-i\Omega\tau + \gamma\tau}.$$
 (69)

We can now find v_x and v_y by taking real and imaginary parts of a(t)

$$a(t) = v_x + iv_y = \frac{1}{m} \int_0^t d\tau (\xi_x(\tau) + i\xi_y(\tau)) e^{(i\Omega - \gamma)(t - \tau)}$$

$$= \frac{1}{m} \int_0^t d\tau e^{-\gamma(t - \tau)} (\xi_x(\tau) + i\xi_y(\tau)) \left[\cos \Omega(t - \tau) + i\sin \Omega(t - \tau)\right],$$

$$= \frac{1}{m} \int_0^t d\tau e^{-\gamma(t - \tau)} \left[\xi_x(\tau) \cos \Omega(t - \tau) - \xi_y(\tau) \sin \Omega(t - \tau)\right]$$

$$+ \frac{i}{m} \int_0^t d\tau e^{-\gamma(t - \tau)} \left[\xi_x(\tau) \sin \Omega(t - \tau) + xi_y(\tau) \cos \Omega(t - \tau)\right]. \quad (70)$$

Thus,

$$v_x(t) = \frac{1}{m} \int_0^t d\tau e^{-\gamma(t-\tau)} \left[\xi_x(\tau) \cos \Omega(t-\tau) - \xi_y(\tau) \sin \Omega(t-\tau) \right]$$
 (71)

$$v_y(t) = \frac{1}{m} \int_0^t d\tau e^{-\gamma(t-\tau)} \left[\xi_x(\tau) \sin \Omega(t-\tau) + x i_y(\tau) \cos \Omega(t-\tau) \right]. \tag{72}$$

(c) We compute now the correlation functions one by one.

$$\langle v_{x}(t)v_{x}(t')\rangle = \frac{1}{m^{2}} \int_{0}^{t} d\tau \int_{0}^{t'} d\tau' e^{-\gamma(t-\tau)-\gamma(t'-\tau')} \langle [\xi_{x}(\tau)\cos\Omega(t-\tau) - \xi_{y}(\tau)\sin\Omega(t-\tau)] \times [\xi_{x}(\tau')\cos\Omega(t'-\tau') - \xi_{y}(\tau')\sin\Omega(t'-\tau')] \rangle$$

$$= \frac{q}{m^{2}} \int_{0}^{\min(t,t')} d\tau e^{-\gamma t-\gamma t'-2\gamma\tau} \left[\cos\Omega(t-\tau)\cos\Omega(t'-\tau) + \sin\Omega(t-\tau)\sin\Omega(t'-\tau)\right]$$

$$= \frac{q}{m^{2}} \cos\Omega(t-t') \int_{0}^{\min(t,t')} d\tau e^{-\gamma t-\gamma t'-2\gamma\tau}$$

$$= \frac{q}{2m^{2}\gamma} \cos\Omega(t-t') e^{-\gamma(t+t')} \left(e^{2\gamma\min(t,t')} - 1\right) = \frac{q}{2m^{2}\gamma} \cos\Omega(t-t') \left(e^{-\gamma|t-t'|} - e^{-\gamma(t+t')}\right). \tag{73}$$

In an analogous way we get

$$\langle v_y(t)v_y(t')\rangle = \frac{q}{2m^2\gamma}\cos\Omega(t-t')\left(e^{-\gamma|t-t'|} - e^{-\gamma(t+t')}\right),\tag{74}$$

$$\langle v_x(t)v_y(t')\rangle = \frac{q}{2m^2\gamma}\sin\Omega(t-t')\left(e^{-\gamma|t-t'|} - e^{-\gamma(t+t')}\right). \tag{75}$$

(d) In the limit $t=t'\to\infty$ we get

$$\langle v_x(t)v_x(t)\rangle = \langle v_y(t)v_y(t)\rangle = \frac{q}{2m^2\gamma}, \qquad \langle \frac{m\vec{v}^2}{2}\rangle = \frac{q}{2m\gamma}.$$
 (76)

Comparing it to the equipartition theorem we get

$$q = 2m\gamma T. (77)$$