
Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/

Moderne Theoretische Physik III SS 2015

Prof. Dr. A. Mirlin Blatt 12, 100 Punkte + 50 Bonuspunkte

Dr. U. Karahasanovic, Dr. I. Protopopov Besprechung, 17.07.2015

1. Short questions (5 + 10 + 15 + 15 + 5 = 50 Punkte + 15 Bonuspunkte)

(a) The probability distribution for x is just the Boltzamnn distribution

p(x) = Ce−V (x)/kBT (1)

with constant C which can be found from normalization

C =
1

a+ 2ae−V0/kBT
. (2)

Thus

pL =
1

1 + 2e−V0/kBT
, pR =

2e−V0/kBT

1 + 2e−V0/kBT
. (3)

The probabilities are equal at

2e−V0/kBT = 1 , T =
V0

kB ln 2
. (4)

(b) The partition function of the system reads

Z =
∞∑
n=1

e−En/kBT . (5)

At low temperatures, kBT � ~2/mL2, we can approximate the sum by the first
two terms and

Z ≈ e−
~2π2

2mL2kBT

(
1 + e

− 3~2π2
2mL2kBT

)
. (6)

We find now the free energy, entropy and heat capacity of the system

F = −kBT lnZ =
~2π2

2mL2
− kBT ln

(
1 + e

− 3~2π2
2mL2kBT

)
≈ ~2π2

2mL2
− kBTe

− 3~2π2
2mL2kBT , (7)

S = −∂TF = kBe
− 3~2π2

2mL2kBT +
3~2π2

2mL2T
e
− 3~2π2

2mL2kBT ≈ 3~2π2

2mL2T
e
− 3~2π2

2mL2kBT , (8)

cL = T∂TS = − 3~2π2

2mL2T
e
− 3~2π2

2mL2kBT +

[
3~2π2

2mL2T

]2

e
− 3~2π2

2mL2kBT ≈ 1

kB

[
3~2π2

2mL2T

]2

e
− 3~2π2

2mL2kBT . (9)

At high temperatures many terms in the sum are of the same order. We can replace
summation by integration. Thus, the partition function reads

Z ≈
∫ ∞

0
dne

− ~2π2n2
2mL2kBT ≈ L

√
mkBT

2π~2
. (10)

Free energy, entropy and the heat capacity are

F = −TkB ln

[
L

√
mkBT

2π~2

]
, (11)

S = kB ln

[
L

√
mkBT

2π~2

]
+

1

2
, (12)

cL =
kB
2
. (13)



The value of cL is in accord with the classical equipartition theorem.

(c) We need first to find the Fermi momentum. In d dimensions we have

n = g

∫
|p|<pF

ddp

(2π~)d
∝ pdF , pF ∝ n1/d. (14)

Here g is the spin degeneracy. The Fermi energy

EF =
p2
F

2m
∝ n2/d. (15)

The heat capacity of a fermi system at low temperatures knows only about the
density of states at the Fermi level and is proportional to T in any dimension.

(d) The partition function can be expressed in terms of the transfer matrix as

Z =
∑

σ1,...σN

Tσ1,σ2Tσ2,σ3 . . . TσNσ1 = trT N. (16)

Writing the trace in the basis where T is diagonal we get

Z = λN0 + λN− + λN+ . (17)

In thermodynamic limit only the term with maximal eigenvalue is important and

Z = λN+ . (18)

At low temperatures

λ+ ≈ 2 coshβJ +
1

coshβJ
≈ eβJ + 3e−βJ . (19)

We thus find

F = −NJ − kBTN ln
[
1 + 3e−2βJ

]
≈ −NJ − 3kBTNe

−2J/kBT , (20)

S =
N

T
(2J + kBT )e−2J/kBT ≈ 2NJ

T
e−2J/kBT , (21)

c =
4J2N

kBT 2
e−2J/kBT . (22)

(e) We consider the commutation relations[
a+, b+

]
=
[
uα† + vβ, uβ† + vα

]
=
[
uα†, vα

]
+
[
vβ, uβ†

]
= −uv + uv = 0 (23)

[
a+, a

]
=
[
uα† + vβ, uα+ vβ†

]
=
[
uα†, uα

]
+
[
vβ, vβ†

]
= v2 − u2 (24)[

b+, b
]

=
[
uβ† + vα, uβ + vα†

]
=
[
uβ†, uβ

]
+
[
vα, vα†

]
= v2 − u2 (25)

We see that all commutation relations are satisfied provided that u2 − v2=1.

(f) Differentiating the Landau functional with respect to the order parameter we get
the saddle-point equation

M(t+ 4bM2 + 6cM4) = 0. (26)



The saddle points are

M0 = 0 (27)

M1,± = ±

√
−b−

√
b2 − 3ct/2

3c
, (28)

M2,± = ±

√
−b+

√
b2 − 3ct/2

3c
. (29)

(30)

They are all real in the vicinity of the point t = tc(b) = b2/2c. In particular, right
at the transition

M1,± = ±
√
− b

6c
, (31)

M2,± = ±
√
− b

2c
. (32)

The second derivative of the Landau functional d2F/dM2 takes values

d2F
dM2

∣∣∣∣
t=tc(b),M=0

= tcb > 0, (33)

d2F
dM2

∣∣∣∣
t=tc(b),M=M1,±

= −b
2

c
< 0, (34)

d2F
dM2

∣∣∣∣
t=tc(b),M=M1,±

=
5b2

3c
> 0. (35)

Thus in the vicinity of the phase transition M0 and M2,± are the minima of the
Landau functional. In this minima the Landau functional takes values

F(M0) = 0. (36)

F(M2,±) = M2
2,±

(
t

2
+ bM2

2,± + cM4
2,±

)
= M2

2,±
6ct+ b(−2b+

√
4b2 − 6ct)

18c
. (37)

In the vicinity of the transition we make the following approximations in Eq. (37):

b ≈ b0, (38)

t ≈ b20
2c

+ α(T − Tc) ≡
b20
2c

+ αδT, (39)

M2
2,± ≈ −

b0
2c
. (40)

(41)

We get

F(M2,±) ≈ −b0αδT
4c

. (42)

We note that at the point of the phase transition F(M2,±) = 0 = F(M0).

We are now ready to give the final results. At δT > 0 the stable state of the system
is M = M0 = 0. The contribution of the magnetic moments to the entropy of the
system δS = −∂TF(M0) = 0.

At δT < 0 the stable state is M = M2,± ≈ ±
√
− b0

2c . The contribution of the

magnetic moments to the entropy of the system δS = −∂TF(M2,±) ≈ b0α/4c. The
magnetization and entropy of the system have jumps at the point of the phase
transition.



2. Bose gas with power-law dispersion relation. (5 + 5 + 5 + 10 + 10 = 35 Punkte)

Let us consider ideal Bose gas in 3 spatial dimensions with the dispersion relation
ε(p) = ε0(p/p0)α. Here, ε0 and p0 are constants with dimension of energy and momentum
respectively and α > 0 is a number.
In this exercise you may need the integral∫ ∞

0
dxxβe−x = Γ(β + 1) , β > −1. (43)

Here, Γ(x) is the Euler gamma function.

(a) We have for the density of bosons

n =

∫
d3p

(2π~)3

1

e(ε(p)−µ)/kBT − 1
. (44)

The number of states with the absolute value of momentum in the interval (p, p+dp)
is

dn =
4πp2dp

(2π~)3
=

p2dp

2π2~3
. (45)

Thus, the density of states is

ν(ε) =
dn

dε
=

p2

2π2~3

dp

dε
=

p3
0

2π2~3

(
ε

ε0

) 2
α d

dε

(
ε

ε0

) 1
α

=
p3

0

2π2~3αε0

(
ε

ε0

) 3
α
−1

. (46)

Finally

n(T, µ) =

∫ ∞
0

dεν(ε)
1

e(ε−µ)/kBT − 1
=

p3
0

2π2~3αε0

∫ ∞
0

dε

(
ε

ε0

) 3
α
−1 1

e(ε−µ)/kBT − 1
.

(47)

(b) At high temperatures e−µ/kBT � 1. Thus

n(µ, T ) ≈ p3
0

2π2~3αε0

∫ ∞
0

dε

(
ε

ε0

) 3
α
−1 1

e(ε−µ)/kBT
=
p3

0Γ[3/α]

2π2~3α

(
kBT

ε0

)3/α

eµ/kBT .

(48)
Thus,

µ(n, T ) = −kBT ln

[
p3

0Γ[3/α]

2π2~3αn

(
kBT

ε0

)3/α
]
. (49)

(c) The Ω-potential an ideal Bose gas is given by

Ω(T, V, µ) = kBTV

∫
d3p

(2π~)3
ln
[
1− e(µ−ε(p))/kBT

]
= kBTV

∫ ∞
0

dεν(ε) ln
[
1− e(µ−ε)/kBT

]
.

(50)
At eµ/kBT � 1 we can expand the logarithm. We get (we take into account expres-
sion for the density of states derived in 2a)

Ω(T, V, µ) = −kBTV
p3

0

2π2~3αε0

∫ ∞
0

dε

(
ε

ε0

) 3
α
−1

e(µ−ε)/kBT

= −kBTV
p3

0Γ[3/α]

2π2~3α

(
kBT

ε0

) 3
α

eµ/kBT = −V p
3
0ε0Γ[3/α]

2π2~3α

(
kBT

ε0

) 3
α

+1

eµ/kBT . (51)



(d) The entropy reads now

S(T, V, µ) = −∂TΩ = V
p3

0ε0Γ[3/α]

2π2~3α
eµ/kBT

(
kBT

ε0

) 3
α

+1 [ 1

T

(
3

α
+ 1

)
− µ

kBT 2

]
.

(52)
We substitute expression for µ derived in 2b to get

S(T, V,N) = kBV n

[(
3

α
+ 1

)
− µ

kBT

]
=

(
3

α
+ 1

)
kBN+kBN ln

[
p3

0Γ[3/α]

2π2~3αn

(
kBT

ε0

)3/α
]
.

(53)
The heat capacity is

cV = T∂TS =
3

α
NkBT. (54)

This is in agreement with the equipartition theorem for α = 2.

(e) We come back to the expression for the number of bosons in the system

n(T, µ) =
p3

0

2π2~3αε0

∫ ∞
0

dε

(
ε

ε0

) 3
α
−1 1

e(ε−µ)/kBT − 1
. (55)

For α < 3 the integral converges at ε = 0 even for µ = 0. Thus, there is a maximal
number of bosons that can be accommodated in the single particle states with
non-zero momentum. If the density of the system is larger than

nc(T ) =
p3

0

2π2~3αε0

∫ ∞
0

dε

(
ε

ε0

) 3
α
−1 1

eε/kBT − 1
, (56)

macroscopic number of particles condenses into the state p = 0. This is the Bose
condensation. On the other hand, for α ≥ 3 the integral in Eq. (55) diverges at
small energies if µ = 0. Thus, there is no Bose condensation.

To estimate the critical temperature we switch in Eq. (56) to dimensionless inte-
gration variable y = ε/kBT . We find

nc(T ) =
p3

0

2π2~3α

(
kBT

ε0

) 3
α
∫ ∞

0
dyy

3
α
−1 1

ey − 1
∝ T 3/α. (57)

Thus,
Tc ∝ nα/3. (58)

3. Particle in magnetic field and Langevin equation
(5 + 10 = 15 Punkte + 10 + 10 = 20 Bonuspunkte)

Consider a particle with charge e and mass m moving on a plane in perpendicular
magnetic field B. The particle also experiences friction force −mγ~v = −mγ(vx, vy)

from the surrounding media and random Langevin force ~ξ(t) = (ξx(t), ξy(t)). The noise
ξ(t) is characterised by the correlator

〈ξα(t)ξβ(t′)〉 = qδαβδ(t− t′). (59)

(a) The equations of motion for our particle include the Lorentz force, the friction force
and the Langevin forces

mv̇x +
eB

c
vy +mγvx = ξx, (60)

mv̇y −
eB

c
vx +mγvy = ξy. (61)



To solve the Langevin equations it is convenient to introduce

a = vx + ivy , a? = vx − ivy. (62)

We have

mȧ− ieB
c
a+ γma = ξx + iξy, (63)

mȧ? + i
eB

c
a? + γma? = ξx − iξy. (64)

(b) We discuss no the solution of the first equation. The solution for a? can be obtained
by complex conjugation.

In the absence of Langevin forces we have

a = CeiΩt−γt, Ω =
eB

mc
. (65)

We now allow C to vary in time and get

mĊ = (ξx(t) + iξy(t))e
−iΩt+γt. (66)

Thus,

C(t) = C0 +
1

m

∫ t

0
dτ(ξx(τ) + iξy(τ))e−iΩτ+γτ (67)

a(t) =

[
C0 +

1

m

∫ t

0
dτ(ξx(τ) + iξy(τ))e−iΩτ+γτ

]
eiΩt−γt. (68)

Due to our initial conditions C0 = 0 and we get finally

a(t) =
eiΩt−γt

m

∫ t

0
dτ(ξx(τ) + iξy(τ))e−iΩτ+γτ . (69)

We can now find vx and vy by taking real and imaginary parts of a(t)

a(t) = vx + ivy =
1

m

∫ t

0
dτ(ξx(τ) + iξy(τ))e(iΩ−γ)(t−τ)

=
1

m

∫ t

0
dτe−γ(t−τ)(ξx(τ) + iξy(τ)) [cos Ω(t− τ) + i sin Ω(t− τ)] ,

=
1

m

∫ t

0
dτe−γ(t−τ) [ξx(τ) cos Ω(t− τ)− ξy(τ) sin Ω(t− τ)]

+
i

m

∫ t

0
dτe−γ(t−τ) [ξx(τ) sin Ω(t− τ) + xiy(τ) cos Ω(t− τ)] . (70)

Thus,

vx(t) =
1

m

∫ t

0
dτe−γ(t−τ) [ξx(τ) cos Ω(t− τ)− ξy(τ) sin Ω(t− τ)] (71)

vy(t) =
1

m

∫ t

0
dτe−γ(t−τ) [ξx(τ) sin Ω(t− τ) + xiy(τ) cos Ω(t− τ)] . (72)



(c) We compute now the correlation functions one by one.

〈vx(t)vx(t′)〉 =
1

m2

∫ t

0
dτ

∫ t′

0
dτ ′e−γ(t−τ)−γ(t′−τ ′)〈[ξx(τ) cos Ω(t− τ)− ξy(τ) sin Ω(t− τ)]

×
[
ξx(τ ′) cos Ω(t′ − τ ′)− ξy(τ ′) sin Ω(t′ − τ ′)

]
〉

=
q

m2

∫ min(t,t′)

0
dτe−γt−γt

′−2γτ
[
cos Ω(t− τ) cos Ω(t′ − τ) + sin Ω(t− τ) sin Ω(t′ − τ)

]
=

q

m2
cos Ω(t− t′)

∫ min(t,t′)

0
dτe−γt−γt

′−2γτ

=
q

2m2γ
cos Ω(t−t′)e−γ(t+t′)

(
e2γmin(t,t′) − 1

)
=

q

2m2γ
cos Ω(t−t′)

(
e−γ|t−t

′| − e−γ(t+t′)
)
.

(73)

In an analogous way we get

〈vy(t)vy(t′)〉 =
q

2m2γ
cos Ω(t− t′)

(
e−γ|t−t

′| − e−γ(t+t′)
)
, (74)

〈vx(t)vy(t
′)〉 =

q

2m2γ
sin Ω(t− t′)

(
e−γ|t−t

′| − e−γ(t+t′)
)
. (75)

(d) In the limit t = t′ →∞ we get

〈vx(t)vx(t)〉 = 〈vy(t)vy(t)〉 =
q

2m2γ
, 〈m~v

2

2
〉 =

q

2mγ
. (76)

Comparing it to the equipartition theorem we get

q = 2mγT. (77)


