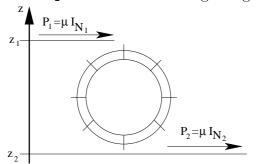
Prof. Dr. Ralph v. Baltz, Dr. Peter Schmitteckert

19.04.05


http://www.tkm.uni-karlsruhe.de/lehre

peter@tkm.uni-karlsruhe.de / Physikhochhaus Zi. 10.17

Übungsblatt Nr. 2 zur Theorie F (Statistische Physik)

1 Wasserrad

Ein Bach liefert einen Teilchenstrom I_N auf der Höhe z_1 , der nach einem Wasserrad auf der Höhe z_2 weiterfliesst. Der zugehörige Energiestrom ist durch $P = \mu I_N$ gegeben.

- a) Wie lautet das Potential μ ?
- b) Welche Leistung gibt das Wasserrad ab?

2 Kopplung zweier Teilsysteme

Gegeben ist ein System bestehend aus zwei identischen thermischen Teilsystemen, $\ell = 1, 2$, und den individuellen Größen T_{ℓ} , $E_{\ell} = C(T_{\ell} - T_0) + E_0$ und $S_{\ell}(T_{\ell})$.

- a) Wie lautet $S_{\ell}(T_{\ell})$ für die Einzelsysteme. (Hinweis: Siehe Vorlesung.)
- **b)** Gewinnen Sie zunächst $S_{\ell} = S_{\ell}(E_{\ell})$. Welche Bedeutung hat $\frac{\partial S_{\ell}(E_{\ell})}{\partial E_{\ell}}$?
- c) Wie lauten $E(T_1, T_2)$ und $S(T_1, T_2)$ des Gesamtsystems?
- d) Die beiden Teilsysteme werden nun in Kontakt gebracht, so dass diese zwar Energie austauschen können, aber weiterhin gegen die Umgebung isoliert sind, d.h. $E_1 + E_2$ ist konstant. Diskutieren Sie die Gesamtentropie als Funktion von E_1 , dabei seien die Anfangstemperaturen der Teilsysteme T_{1a} und T_{2a} , und die Anfangsenergien seien E_{1a} und E_{2a} . (Wählen Sie für eine Skizze z.B. $E_{1a} = 3CT_0$, $E_{2a} = CT_0$.)
- e) Der Gleichgewichtszustand ergibt sich aus dem Maximum der Entropie als Funktion von E_1 . Welche Temperaturen und Energien ergeben sich für die Teilsysteme?
- f) Wie groß ist die Entropiezunahme des Gesamtsystems nach Erreichen des Gleichgewichts, ausgedrückt durch T_{1a} und T_{2a} ?
- g) T_{1a} und T_{2a} seien nur wenig von der Gleichgewichtstemperatur T_e verschieden: $T_{1a} = T_e + \Delta T/2$, $T_{2a} = T_e \Delta T/2$. Bestimmen Sie die erzeugte Entropie $\Delta S = S_e S_a$ bis zur Ordnung $(\Delta T)^2$. Vergleichen Sie mit der zwischen den Teilsystemen $(1 \leftrightarrow 2)$ geflossenen Entropie als Funktion von ΔT .
- h) Wie lauten $S(E_e)$ und $E(T_e)$ nach dem Einstellen des Temperaturgleichgewichts, ausgedrückt durch die Gesamtenergie bzw. durch die Gleichgewichtstemperatur?
 - Besprechung in den Übungsgruppen am Dienstag, 26.04.04—