Institut für Theorie der Kondensierten Materie

Prof. Dr. Ralph v. Baltz, Dr. Peter Schmitteckert

3.05.05

http://www.tkm.uni-karlsruhe.de/lehre

peter@tkm.uni-karlsruhe.de / Physikhochhaus Zi. 10.17

Übungsblatt Nr. 4 zur Theorie F (Statistische Physik)

1 Stirlingformel: $N! = \sqrt{2\pi N} \left(N/e \right)^N \left(1 + \frac{1}{12N} \cdots \right)$.

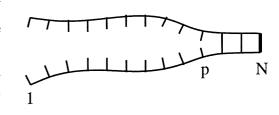
Zeigen Sie, dass der Vorfaktor $\sqrt{2\pi N}$ für die Berechnung der freien Energie eines idealen Gases keine Rolle spielt, obwohl er gegen unendlich strebt.

[2] Entartungstemperatur eines idealen Gases.

In der freien Energie tritt die thermische de Broglie Wellenlänge $\lambda_{\rm dB} = \sqrt{2\pi\hbar^2/(mk_{\rm B}T)}$ in der Kombination $\lambda_{\rm dB}^{-3}\,V/N$ auf.

- a) Welche physikalische Bedeutung hat λ_{dB} ? (Hinweis: De Broglie-Wellenlänge für Materie)
- b) Was drückt die Größe $\lambda_{\rm dB}^{-3}\,V/N$ aus?
- c) Schätzen Sie die Entartungstemperatur T_e ab, für die $\lambda_{\rm dB}^{-3} \, V/N = 1$ wird:
 - Elektronen im Festkörper (z.B. Aluminium $N/V \approx 2 \cdot 10^{23} cm^{-3}$).
 - Helium Gas (Dichte bei Normalbedingungen).
- (Bohr-) van Leeuwen Theorem

Die klassische Hamiltonfunktion eines geladenen Teilchen im Magnetfeld lautet


$$H = \sum_{j=1}^{N} \frac{1}{2m} \left(\vec{p}_j - q \vec{A}(\vec{r}_j) \right)^2 + V(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N)$$
 (1)

Zeigen Sie, dass die klassische, kanonische Zustandssumme unabhängig vom Magnetfeld ist, d.h. das System zeigt im Rahmen der klassischen Physik keinerlei magnetische Eigenschaften. (Hinweis: Substitution im Integral)

4 Reißverschlussmodell eines DNS-Moleküls:

Die Mikrozustände eines doppelstrangigen Polymers sind wie folgt festgelegt:

- (i) Die beiden Stränge können an den Stellen $1,2,\ldots,N$ Bindungen eingehen. Eine geschlossene Bindung hat die Energie $\varepsilon_0=0$, eine geöffnete $\varepsilon\neq 0$.
- (ii) Die p-te Bindung kann nur geöffnet werden, wenn $1, 2, \ldots, p-1$ bereits offen sind. Die N-te kann nicht geöffnet werden.

- a) Das Molekül befindet sich im Kontakt mit einem Wärmebad (Temperatur T). Bestimmen Sie die kanonische Zustandssumme.
- b) Berechnen Sie die mittlere Zahl $\langle n \rangle$ offener Bindungen als Funktion von $x = e^{-\beta \varepsilon}$.
- c) Was folgt für den Anteil $\langle n \rangle/N$ offener Bindungen im Limes $N \to \infty$?
 - Besprechung in den Übungsgruppen am Dienstag, 10.05.05—