Übungen zur Theoretischen Physik F SS 08

Prof. Dr. P. Wölfle

Blatt 2

Dr. M. Greiter

Besprechung 29.04.08

1. Gibbssches Paradoxon

(3 Punkte)

Ein thermisch isolierter Behälter mit Volumen V ist durch eine fixierte, thermisch isolierte Trennwand in zwei Teilvolumina V_1 , V_2 unterteilt, $V_1 + V_2 = V$. Beide Teilvolumina enthalten ideale Gase mit N_1 bzw. N_2 Teilchen bei Drücken p_1 , p_2 und Temperaturen T_1 , T_2 .

- (a) Die Trennwand sei nun wärmedurchlässig und verschiebbar. Berechnen Sie Temperatur T und Druck p im Endzustand.
- (b) Nachdem der Endzustand in **a)** erreicht ist, wird die Trennwand ganz entfernt. Berechnen Sie die Änderung ΔS der Gesamtentropie, falls es sich um (i) unterschiedliche Gassorten in V_1 und V_2 , (ii) dieselbe Gassorte handelt. Für das ideale Gas gilt:

$$S(T, V, N) = Nk \left[\ln(V) + \frac{3}{2} \ln(T) \right] + Ns_0$$

Die Konstante s_0 kann von der Gassorte abhängen. Zu welcher allgemeinen Aussage über die Entropie steht das Ergebnis im Widerspruch?

(c) Zeigen Sie, daß mit der "modifizierten" Entropie

$$\widetilde{S}(T, V, N) = S(T, V, N) - k \ln(N!)$$

der Widerspruch verschwindet.

Hinweis: Stirling-Formel.

(jeweils 1 Punkt)

2. Statistische Gesamtheiten

(4 Punkte)

Es sollen ganz allgemein die mikrokanonische Gesamtheit (unabhängige Variablen U, N, V), die kanonische (T, N, V) und die großkanonische Ges. (T, μ, V) betrachtet werden. In der kanonischen Gesamtheit ist die innere Energie durch einen Mittelwert $U = \langle E \rangle$ gegeben, in der großkanonischen Gesamtheit auch die Teilchenzahl, $N = \langle N \rangle$.

(a) Kanonisch: Geben Sie die Definition von $\langle E \rangle$ an, und drücken Sie das Schwankungsquadrat

$$\langle (\Delta E)^2 \rangle = \langle E^2 \rangle - (\langle E \rangle)^2$$

durch eine geeignete thermodynamische Ableitung von U aus. (1 Punkt)

(b) Großkanonisch: Geben Sie die Definition von $\langle N \rangle$ an, und drücken Sie

$$\langle (\Delta N)^2 \rangle = \langle N^2 \rangle - (\langle N \rangle)^2$$
 und $\langle (\Delta E)^2 \rangle$

durch geeignete Ableitungen von N, U aus. (2 Punkte)

(c) Begründen Sie durch Betrachtung der Schwankungen $\langle (\Delta e)^2 \rangle$ und $\langle (\Delta n)^2 \rangle$ der Dichten: e = E/V, n = N/V:

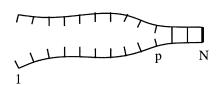
Im thermodynamischen Limes sind alle drei Gesamtheiten äquivalent. (1 Punkt)

3. Reißverschlußmodell eines DNS-Moleküls

(3 Punkte)

Die Mikrozustände eines doppelstrangigen Moleküls sind wie folgt festgelegt:

- (i) Die beiden Stränge können an den Stellen $1,2,\ldots,N$ Bindungen eingehen. Eine geschlossene Bindung hat die Energie $\Omega\neq 0$, eine geöffnete die Energie 0.
- (ii) Die p-te Bindung kann nur geöffnet werden, wenn $1, 2, \ldots, p-1$ bereits offen sind. Die N-te kann nicht geöffnet werden.



- (a) Das Molekül befindet sich im Kontakt mit einem Wärmebad (Temperatur T). Bestimmen Sie die kanonische Zustandssumme. (1 Punkt)
- (b) Berechnen Sie die mittlere Zahl $\langle p \rangle$ offener Bindungen als Funktion von $\frac{\Omega}{kT}$ und N. Was folgt für den Anteil $\langle p \rangle / N$ offener Bindungen im Limes $N \to \infty$? (2 Punkte)