Übungen zur Theoretischen Physik F SS 08

Prof. Dr. P. Wölfle

Blatt 4

Dr. M. Greiter

Besprechung 13.05.08

1. Ideales Boltzmann-Gas

(3 Punkte)

Ein Gas aus N freien Punktteilchen der Masse m befindet sich im Volumen $V=L^3$. Die Teilchen sollen quantenmechanisch, aber als unterscheidbar behandelt werden, wobei periodische Randbedingungen an die Eigenzustände eines Teilchens gestellt werden.

- (a) Geben Sie die Mikrozustände $\{\alpha\}$ der kanonischen Gesamtheit mit Temperatur T an, und berechnen Sie die Zustandssumme Z(T,V,N) im thermodynamischen Limes. (1 Punkt)
- (b) Bestimmen Sie die Geschwindigkeitsverteilung $\rho(\mathbf{p})$ aus der Wahrscheinlichkeit

$$\rho(\mathbf{p}) d^3 p = \frac{1}{N} \sum_{i=1}^{N} \langle \delta_{\mathbf{p}, \mathbf{p}_i(\alpha)} \rangle$$

ein Teilchen im Impulsraumelement d³p zu finden, wobei $\mathbf{p}_i(\alpha)$ der Impuls des Teilchens Nr. i im Mikrozustand α ist. (2 Punkte)

2. Ideales Gas aus zweiatomigen Molekülen

(5 Punkte)

Ein ideales Gas aus N Molekülen befindet sich in einem Volumen V (in drei Raumdimensionen). Jedes Molekül besitzt Schwingungs-, Rotations- und Translationsfreiheitsgrade. Das Gas ist an ein Wärmebad der Temperatur T angekoppelt (kanonische Gesamtheit).

(a) Betrachten Sie zunächst ausschließlich die Schwingungsfreiheitsgrade des Gases. Die Energie eines Moleküls ist dann gegeben durch

$$E_n^{osz} = \hbar\omega_0(n + \frac{1}{2}), \quad n = 0, 1, 2, \dots$$

Wodurch sind die Mikrozustände $\{\alpha\}$ der Schwingungsbewegung des Gases festgelegt? Berechnen Sie die zugehörige kanonische Zustandssumme Z^{osz} , die innere Energie U^{osz} und daraus die spezifische Wärme

$$c_V^{\rm osz} = \left(\frac{\partial U^{\rm osz}}{\partial T}\right)_{V.N}$$

Bestimmen Sie asymptotische Ausdrücke von c_V^{osz} für $T \to 0$ und $T \to \infty$. (2 Punkte)

(b) Betrachten Sie nun ausschließlich die Rotationsfreiheitsgrade. Die Energie eines Moleküls ist jetzt durch seinen Bahndrehimpuls $\mathbf{L}^2 = l(l+1)$ gegeben,

$$E_l^{\text{rot}} = \frac{\hbar^2}{2I}l(l+1), l = 0, 1, 2, \dots$$

wobei I= const. das Trägheitsmoment ist. Geben Sie die Mikrozustände $\{\alpha\}$ für diesen Fall an (Entartung!). Bestimmen Sie die kanonische Zustandssumme Z^{rot} näherungsweise für kleine Temperaturen $kT\ll \frac{\hbar^2}{2I}$, und daraus $U^{\rm rot}$ und $c_V^{\rm rot}$.

Bestimmen Sie nun $Z^{\rm rot}$ und daraus $c_V^{\rm rot}$ im Limes $T\to\infty.$ (2 Punkte)

(c) Betrachten Sie nun ausschließlich die Translationsbewegung. Geben Sie $U^{\rm trans}$ und $c_V^{\rm trans}$ an.

Schließlich seien alle Freiheitsgrade des Gases zugelassen. Begründen Sie, dass

$$c_V = c_V^{\text{osz}} + c_V^{\text{rot}} + c_V^{\text{trans}}$$

(1 Punkt)

3. Ideales Fermi-Gas

(2 Punkte)

Wir betrachten N freie fermionische Punktteilchen der Masse m, die auch einen Spin 1/2 besitzen. Diese befinden sich in einem Volumen $V=L^3$, mit periodischen Randbedingungen für die Wellenfunktionen. Es sei T=0.

Berechnen Sie die Fermi-Energie $\varepsilon_F(V, N)$ auf zwei Wegen:

- (i) über die Zustandsdiche $\mathcal{N}(\varepsilon)$ (siehe Aufgabe 3b von Blatt 3), und
- (ii) über das Volumen der Fermi-Kugel.