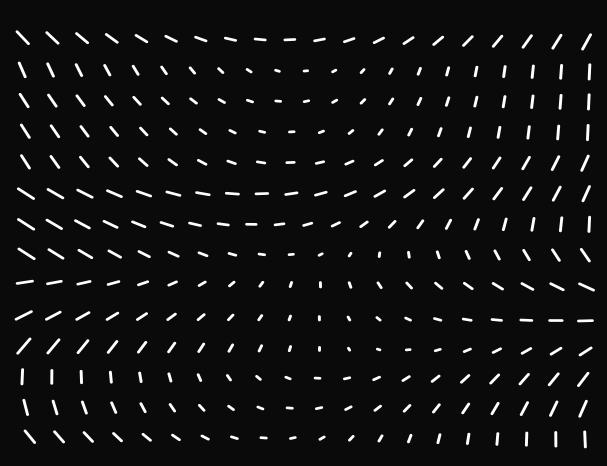
Statistische Physik Theo Fb Th. Schwetz-Mangold (KIT SS2021)

VO 12: Klassifizierung von Phasenübergängen Ideales Spinsystem



Phasenübergange Système mit Wechselvoirlemgen Ewischen d. Teildeen \in isleale Syst. -) allz. Klarrifizierneg -) Spinsystème - Ferromagnetismus -) Van der Waals gas Klassifizierng van Phasenibergangen 1sp: fest - flissig - gasformig - Plasma > normale Flissigle. > Levroma grehis uns versde. Kristallstruhturen Supraleiter

Bose-Einstein Kondensation

WS: gegeben T, P: u(T,P) brio freie Eutholpie G = Nju (T,P) Phose mit kleinsten p (od. G) entspricht den Gleich gewichts Eustand (reale Syst. metastabile Zustande) Phasen Amol B: hasen A mal B: $\mu(P,T) = \text{Min} \left[\mu_A(P,T), \mu_B(P,T) \right]$ Phosenibergeng bei 14 (T,P) = 1/2 (T,P) dine im P-T Diagramm P=P(T) feet Trippelp.
8ast.

betr. Phasenübergong bei konstantem Toder P - i. A. Sind Ableitugen hidt stelig am ibergang () + () bzw. () + () p $\Rightarrow S = -\left(\frac{2\mu}{0T_0}\right) \Rightarrow \Delta S \neq 0$ v= (3p) > av + 0 => Phasenibergang 1. Ordung

am britisden Paulit: (Dyg) = (Dyg) ober $\left(\frac{\mathcal{D}^2 \mu_0}{\mathcal{T}^2}\right) \neq \left(\frac{\mathcal{D}^2 \mu_0}{\mathcal{T}^2}\right)_{p}$ -> ûbergang 2. Ordung alle: Übergang n-ter Ordung: (Elvrenfest) (2 h) ist unstehig und (2 h stehig für m<n lsp: spezifische Warune: $\varphi = \frac{1}{7} \left(\frac{2s}{2T} \right) = -\frac{1}{7} \left(\frac{5^2 h}{2T^2} \right)$ G Cp 1 (6 1. Ordu. 2. Ordu 3. Ordu.

unsolerne Klassifizierng: wâldt einen Ordungsparaueter 4 2. B.: -) Volumen (fest-flissig) -) Magnetisière (Ferro - / Paramon.) -) Auz. d. kondensierter House (bose-Einel Kondensurg) wenn 4 am Phasen Wher going funtelig: 1. Ording Stelig: 2. Ording Mibroskopische Geschreibng von Phasenüberg. Hamilton operator $H(V, N) \rightarrow E_r(V, N)$ \Rightarrow $Z(T,V,N) = Z exp(-\beta E_{\lambda}(V,N))$ \Rightarrow $F = -kT \ln z \Rightarrow G = N_{\mu}(P,T)$ => Phasen über g.

Ablitug von unstehig => Abl. and ven Z unstelig (hôbere Abl. singular!) aber e-BEr ist analys. Fundian > beliebig off differentierhar für T>0 => Abl. van 7 leann nur fur unendliche Saume divergiren Asp: •) $\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$ oliverg. für $q \Rightarrow 1$ •) Bose-Gas: $9 = \frac{1}{V} = \frac{1}{3^3} = \frac{e^{\beta n \ell}}{e^{3/2}}$ 38 ~ 35 ~ 5 es es es olivers. fin Formal: Phasenibergers nur für uneudliche Systeme " Thermooligu. N > 00, V > 00, 9 = N = coust. dimes "

in endlichen Systemen: Unstehigbeihen ausgeschmiert /abgerndet => fir N~ 10²⁴ irrelevent! Para -, Ferromagnehismus -) ioleales Spinsyst. (Paramagn.)

-) WW zw. Spins > Ferromagn. (Weissches Hoolele) > Phasenuberg, spontane

Symmetriebreding Soleales Spinsgetein Teildren Masse m, dading 9, Spin 3 => magnet. Moment \(\vec{\pi} = \mu \vec{\si} \) $\mu = g \frac{g t}{2mC}$ $j = -2\mu g \hat{S}$ bsp. Eldvron: 9=-e, g=2 MB = Eti Zue C Bolorsche Magneton

hier
$$\mu/\mu_{b}$$
 \Rightarrow dem. Pobenhial!

ausseres Magnesfelol \vec{B} : $\varepsilon = -\vec{\mu} \cdot \vec{b}$

sei $\vec{B} \parallel \vec{t} - \text{Richt.} \Rightarrow S_{z} = \pm \frac{1}{2}$
 $\varepsilon = -\vec{\mu} \cdot \vec{b} = 2\mu_{b}BS_{z} = \pm \mu_{b}B$

System and N Elebtronen $S_{z} = \pm \frac{1}{2}$

Milro zwst.: $r = (S_{z_{11}}S_{z_{21}}...S_{z_{N}})$
 μ ideal": leeine Wechselvoirling two. Spins

 $H = -\sum_{i}\vec{\mu}_{i}\cdot\vec{B} = 2\mu_{b}\sum_{i}\vec{S}_{i}\cdot\vec{B}$
 $E_{h}(B,N) = \sum_{i=1}^{N} \varepsilon_{i} = \sum_{i=1}^{N} 2\mu_{b}BS_{z_{i}}$
 $E_{h}(B,N) = \sum_{i=1}^{N} \varepsilon_{i} = \sum_{i=1}^{N} \sum_{i=1}^{N} \varepsilon_{i}$
 $E_{h}(B,N) = \sum_{i=1}^{N} \varepsilon_{i} = \sum_{i=1}^{N} \sum_{i=1}^{N} \varepsilon_{i}$
 $E_{h}(B,N) = \sum_{i=1}^{N} \varepsilon_{i} = \sum_{i=1}^{N} \sum_{i=1}^{N} \varepsilon_{i}$
 $E_{h}(B,N) = \sum_{i=1}^{N} \varepsilon_{i} = \sum_{i=1}^{N} \varepsilon_{i}$
 $E_{h}(B,N) = \sum_{i=1}^{N} \varepsilon_{i}$
 $E_{h}(B,N) = \sum_{i=1}^{N} \varepsilon_{i}$
 $E_{h}(B,N) = \sum_{i=1}^{N} \varepsilon_{i}$
 $E_{h}(B,N) = \sum_{i=1}^{N} \varepsilon_{i}$

cin-Teildren Zurtanohraume:

2, (T,B) =
$$\sum_{s=1}^{2} e^{-2h_{s}bS_{s}} = 2 \cosh (\beta h_{s}b)$$

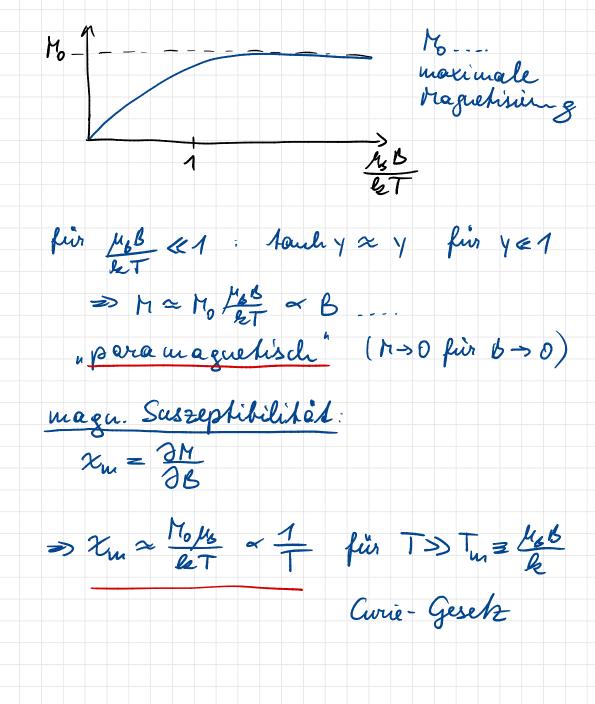
Wabrscheinliche. für parallel (+), antiparal (-)

Sinstellung eines Spins:

 $P_{n} = \frac{e^{+R_{n}}}{2} \implies P_{\pm} = \frac{e^{\pm}h_{s}b}{2\cosh (\beta h_{s}b)}$

Smittlere magn. Moment eines Teildrens

 $\overline{\mu} = -2\mu_{s}S_{z} = -2\mu_{s}(S_{+}P_{+}+S_{-}P_{+}) = \mu_{s}(P_{-}-P_{+})$
 $h_{z} = -\frac{2\pi}{2} = -\frac{2\pi}$



Energie: E = Er = 2 NMBB= = - NMB =-VMB = E(T,B) für geg. T, B: Gleichgewichtskeol.: F(T,B) = E-TS = -VMB-TS -> uninimal (für V, N koustant) > - VBM: M'uniglichet groß =>
Spins parallel ausrichten -TS: Smoglichet grots => Spins Zufallig - bei großen B: vale Term dominier/
- n- T: Zweik - n -